Discovering Adaptable Symbolic Algorithms from Scratch

Stephen Kelly'4, Daniel S. Park’, Xingyou Song"?, Mitchell MclIntire®, Pranav Nashikkar®, Ritam

Guha?,

Wolfgang Banzhaf?, Kalyanmoy Deb®, Vishnu Naresh Boddeti®, Jie Tan'?, Esteban Real'?

'Google Research, 2Google DeepMind, *Google, “McMaster University, >°Michigan State University

Autonomous robots in the real world must rapidly adapt to environmental changes.

Starting from empty code and only using

wX: vector memory at address X.

ot 165 v, 0 simple primitives, AutoRobotics-Zero (ARZ)

w0 = copy(v o

L) =0 searches for an algorithm to control a real
wi[0] = -0.858343 * norm(w2) robot SimUIator. .
w2 = w0 * w0

return log(x), wi

sX: scalar memory at address X.
vX: vector memory at address X.
obs, action: observation and action vectors.
def GetAction(obs, action):
if s13 < s15: sb = -0.920261 * si15
if s15 < s12: s8, vi4, i13 = 0, min(v8, sqrt(min(0, v3))), -1

In the end, evolution discovers an
- algorithm that walks and adapts
to the breakage of a random
limb at a random time on-the-
fly. The discovered algorithm
has very few parameters and
outperforms baselines.

Laikago robot simulator.
Rendering credit: Peng 2020.

\ "Learning Agile Robotic..."

aaAnNNNAAANNNNANANNNANAANANNNANARNANNATN

if s1 < s7: s7, action = f(s12, v0, i8)

action = heaviside(v12)

if s13 < s2: s15, v3 = f(s10, v7, i2)

if s2 < s0: si11, v9, i13 =0, 0, -1

s7 = arcsin(s15)

if s1 < s13: s3 = -0.920261 * s13

s12 = dot(v3, obs)

s1, s3, s15 = maximum(s3, s5), cos(s3), 0.947679 * s2

if s2 < s8: s5, v13, i5 = 0, min(v3, sqrt(min(0, v13))), -1 ST A R S N A ——
if s6 < s0: s1b, v9, il1 =0, 0, -1

if s2 < s3: s2, v7 = £3(s8, vi2, il)

if s1 < s6: s13, vi4, i3 = 0, min(v8, sqrt(min(0, v0))), -1
if s13 < s2: s7 = -0.920261 * s2

if s0 < sl1: s3 = -0.920261 * si

if s7 < sl1: s8, action = f(s5, v15, i3) 800 1
if s0 < s13: sb, v7 = f(s15, v7, i1b)
s2 = s10 + s3

if s7 < s12: si11, vi3 = f(s9, v1b, ib)
if s4 < sl11: s0O, v9, i13 =0, 0, -1
s10, action[i5] = sqrt(s7), s6

if s7 < 89: s156 =0 200 -
if s14 < s11: s3 = -0.920261 * si1i

if s8 < sb: s10, vi15, il = 0, min(v13, sqrt(min(0, v0))), -1

return action

vavvvvvvvvvvvvvvvvu

hnnnnnnnnnnnnnnnnnae

Action

BN ARZ B MLP HEEE LSTM

LANNAANNANNANNNANNSN

(*)}
o
o

IS
o
o

AManasanAnnaanAnnnn

Average Reward

||

BaelsLel SRNE 300 350 400 450 500 550 600 650 70

Steps

Front-Right Front-Left Back-Right

To achieve this, an outer search loop acts on a
“genome” of code and an inner loop evaluates its
ability to predict actions and adapt to radical change,
simulating evolution and lifetime learning.

Evolved walking behavior
changes rapidly when a leg

‘ ; l breaks, and the robot
P "] BN p < reliably avoids falling.
I/ rewardt+1 E rewardt \ Population
| Policies
obS¢+1 : obs; \ y
Selection I Leg break
i 5 5 A Fall
Variation _H !
Crossover = & ,,
Mutation | et - N
] . 1 A
| actiony]] ~NA
\ / { ARZ {1 LSTM -
N Evaluation Environment Y,
~ - = . . . i .
A Sample robot trajectories in each leg breaking task.

Float Value

Google Research/

l[}/IcM%ster
niversity

S8 MICHIGAN STATE
UNIVERSITY

Code evolution builds simple, interpretable algorithms with minimal inductive bias.

No Breaking

The algorithm descretizes its observations into
i 5 —— 4 memory states over time. A random leg
= — | breaking disrupts the temporal pattern,
-_/\/-_/\/-_/\I/-A [\%/\J_NJ\J signalling a change in the environment.
i o o The behavior of other memory scalars are
ol Wl R unaffected by the leg break. Intriguingly, their
Y | [| q/" periodicity =~ resembles central pattern
generators in biological circuits responsible for

generating rhythmic movements (Marder 2021.
“Central pattern generators...”).

10
— 512
—— 515
5_
— s7

450 500 550

In order to run hundreds of experiments for ., =4
analysis, we introduce a Cataclysmic Cartpole -

task that requires less compute than the =)
quadruped.

In Cataclysmic Cartpole, the evolved controller
can be interpreted as a linear RNN or a variant
of a PID. Even when multiple physics
parameters suddenly change, this policy
maintains near optimal control. # 1, i: &-dinensional vects

sO = a * s2 + action
sl = sO + s1 + b *x action + dot(V, obs)
s2 = s0 + ¢ x s1

A non-stationary Cartpole in which the track
angle and other parameters change at random
times.

sX: scalar memory at address X.

obs: vector [x, theta, x_dot, theta_dot].

a, b, c: fixed scalar parameters.
V, W: 4-dimensional vector parameters.

Policy Type [Train Task]: HEEE ARZ [All] mmm LSTM [All]
- 1000
: How can we build adaptive control
5 %0 policies without any prior knowledge of
2 s00- what type of change will occur?
Stationary Force Damping Track Angle Al

Future work may build on preliminary
 1000- oy bee el et S AREIEO A Nowel, P TRO rAose findings that adding partial-observability
S 500- and actuator noise to the standard
3 00 Cartpole task allows ARZ to evolve
g algorithms that adapt to multiple unseen

o __changes in Cataclysmic Cartpole.

Stationary Force Damping Track Angle All

