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CHROMATIC NETWORKS FOR REINFORCEMENT LEARNING
Compact, efficient architectures are very important for practical use on real robots. [1] has shown that
Toeplitz Policies, which use diagonally similar weights, are just as effective as standard policies. How-
ever, can we do even better through weight sharing? Yes!

We optimize over the space
of weight sharings (parti-
tions) over neural network
weights. Our emphasis is
on fast inference time. For
a matrix of shape (m,n),
our method allows matrix-
vector multiplication in
O
(

mn
log(max(m,n))

)
time.

(Above): Example of Toeplitz policy and diagonal weight sharing pattern.

(Left): A partitioning for a Linear Policy found using our method. (Right): A partitioning for a 1-Layer
MLP Policy found using our method.

ENAS WITH ES
Our key observation is that Efficient Neural Architecture Search (ENAS) [2] combines with Evolutionary
Strategies (ES) [3, 4] very naturally. We can use the standard Pointer Network Architecture to define
a distribution πθ on the set of all partitionings (colorings) of weights. If f(P,W) defines the rollout
reward using neural network policy with weights W and partitioned with P , then ENAS performs
alternating optimization on F (θ,Wshared) = EP∼πθ [f(P,Wshared)]

Instead of using backpropagation (which is not possible in Reinforcement Learning) when op-
timizing over Wshared, we use Evolutionary Strategies (ES) which estimates the gradient of
the Gaussian smoothed objective Fσ(θ,Wshared) = Eg∈N (0,IM )[F (θ,Wshared + σg)] for a fixed
smoothing parameter σ > 0. We approximate its gradient given by: ∇Wshared

Fσ(θ,Wshared) =
1
σEg∈N (0,IM )[F (θ,Wshared + σg)g] with the following forward finite difference unbiased estimator:

∇̂Wshared
Fσ(θ,Wshared) =

1

t

t∑
i=1

gt

[
f(θ,Wshared + σgt)− F (θ,Wshared)

σ

]
(1)

where g1, ...,gt are sampled independently at random from N (0, IM ). The number of workers t can be
scaled highly (1000+), as we only need to use CPU’s.

COMPACTIFICATION RESULTS
Simply masking neural network weights does not work very well:

However, we find Chromatic networks are able to provide > 90% compression in some cases:
Environment Dimensions Architecture Partitions Mean Reward Max Reward

Swimmer (8,2) L 8 97 365
Reacher (11,2) L 11 -144 -6
Hopper (11,3) L 11 216 999
Hopper (11,3) H41 11 247 3408
HalfCheetah (17,6) L 17 1812 3653
HalfCheetah (17,6) L 50 1383 4318
HalfCheetah (17,6) H41 17 2148 3779
HalfCheetah (17,6) H41, H41 17 3036 5285
Walker2d (17,6) H41 17 1943 3695
Pusher (23,7) H41 23 -419 -144
Striker (23,7) H41 23 -1926 -248
Thrower (23,7) H41 23 -1651 -61
Ant (111,8) H41, H41 50 1047 1440
Minitaur (7, 13) L 13 4.84 7.2
Minitaur (7, 13) L 50 6.08 7.91
Minitaur (7, 13) H41 13 7.12 9.34

Environment Architecture Reward # weight-params compression # bits

Striker Chromatic -248 23 95% 8198
Masked -967 25 95% 8262
Toeplitz -129 110 88% 4832

Circulant -120 82 90% 3936
Unstructured -117 1230 0% 40672

HalfCheetah Chromatic 3779 17 94% 6571
Masked 4806 40 92% 8250
Toeplitz 2525 103 85% 4608

Circulant 1728 82 88% 3936
Unstructured 3614 943 0% 31488

Hopper Chromatic 3408 11 92% 3960
Masked 2196 17 91% 4726
Toeplitz 2749 94 78% 4320

Circulant 2680 82 80% 3936
Unstructured 2691 574 0% 19680

Walker2d Chromatic 3695 17 94% 6571
Masked 1781 19 94% 6635
Toeplitz 1 103 85% 4608

Circulant 3 82 88% 3936
Unstructured 2230 943 0% 31488

(Left) Rewards when using Chromatic Networks. (Right) Comparisons to other methods.

Note that adding more layers while maintaing the same number of partitions (i.e. true weights)
can boost performance, due to increased representation power.

COMPARISONS TO RANDOM SEARCH
NAS Search produces better partitionings than random sampling or random search (i.e. controller is not
trained):
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