# Closing the Sim-To-Real Gap with Evolutionary Meta-Learning

Xingyou (Richard) Song Yuxiang Yang Krzysztof Choromanski Ken Caluwaerts Wenbo Gao Chelsea Finn Jie Tan Aldo Pacchiano Yunhao Tang







#### Locomotion

Locomotion is one of the most fundamental skills of all land animals:







Elephants



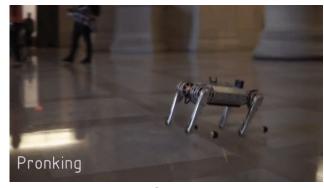
Humans

#### **Robot Locomotion**

So far, Robot Locomotion research has displayed an impressive set of results to reproduce this natural skill.



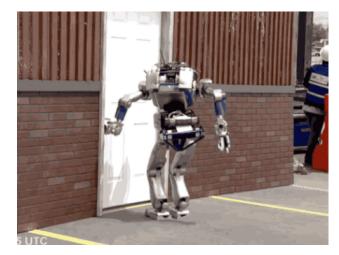
**Boston Dynamics Spot** 



MIT Cheetah

## **Slight Changes in Dynamics**

But unfortunately, robots can be fragile to slight changes in dynamics.



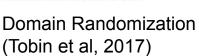
DARPA Robotics Challenge, 2015



Asimo Robot, 2006

## **Prior Works: Robustness to Real World Changes**



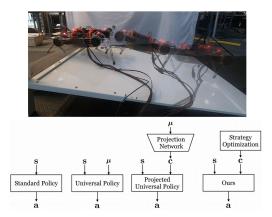


- Only trains in sim
- Assumes all tasks use same optimal policy.



Model Based Adaptation (Nagabandi et al, 2019)

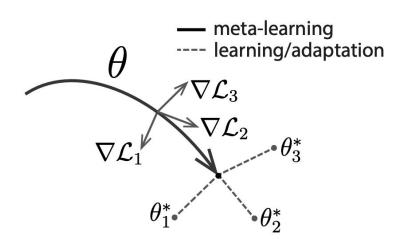
- Compounding error with dynamics models
- Acquiring an accurate model can be difficult.



Meta Strategy Optimization (Yu et al, 2020)

- Latent context vectors appended to the state
- Context may not contain necessary information

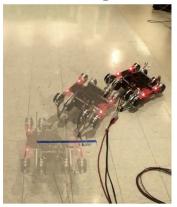
## But what about MAML?



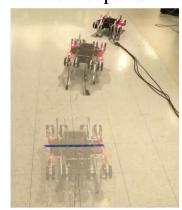
## Our Strategy: MAML + Adaptation w/ Real world Data

- Train most skills in sim: "meta-policy"
- Fine-Tune + Adapt w/ a little real world data: "adapted-policy"
- Model-Free: Only needs feed-forward policy mapping state -> action.

**Before Adaptation** 



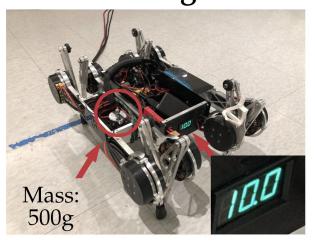
After Adaptation



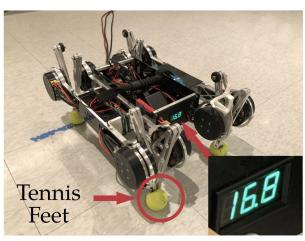
Minitaur Robot adapts to mass imbalances and voltage changes.

#### Task Setup

Mass-Voltage Task



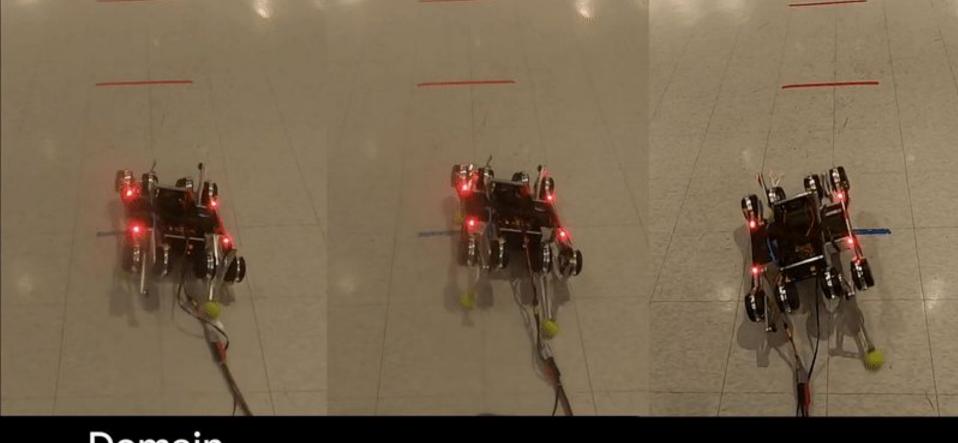
#### **Friction Task**



- Mass Voltage: 500g mass on side, voltage reduced to disrupt leg synchronization
- Friction: Tennis Balls on feet, to reduce gait via slipping.



The initial policy shifts to the right.



Domain Randomization

**PG-MAML** 

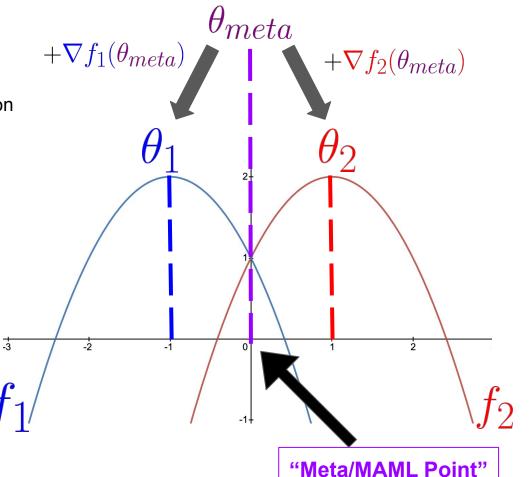
**Our Method** 

## How did we get here? (Questions?)

#### **Intuition of MAML**

**Problem:** Objectives/tasks don't have common optima.

**Solution:** Find a Meta-Point!



## **Reaching the Meta-Point**

Define Adaptation Operator/Inner Loop:  $U(\theta,f)=\theta+
abla f(\theta)$ 

#### **Optimize:**

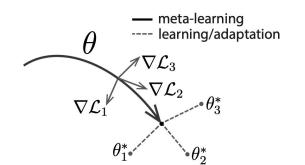


$$f_1(\theta) + f_2(\theta)$$

$$f_1(U(\theta, f_1)) + f_2(U(\theta, f_2))$$

#### Formalism of Meta-Learning

Adaptation uses little data



$$\max_{\theta} J(\theta) := \mathbb{E}_{T \sim \mathcal{P}(\mathcal{T})} [\mathbb{E}_{\tau' \sim \mathcal{P}_T(\tau'|\theta')} [R_T(\tau')]] \xrightarrow{\text{bilevel optimization formulation}} \theta' = U(\theta, T) = \theta + \alpha \nabla_{\theta} \mathbb{E}_{\tau \sim \mathcal{P}_T(\tau|\theta)} [R(\tau)]$$
 one-shot gradient-based adaptation operator

#### **Gradient-Based Meta Learning is Complicated!**

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{T \sim \mathcal{P}(\mathcal{T})} [\mathbb{E}_{r' \sim \mathcal{P}_T(\tau'|\theta')} [\nabla_{\theta'} \log \mathcal{P}_T(\tau'|\theta') R(\tau') \nabla_{\theta} U(\theta, T)]]$$

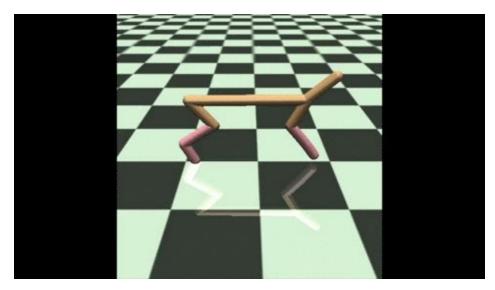
$$\boxed{\nabla_{\theta} U} = \mathbf{I} + \alpha \int \mathcal{P}_T(\tau|\theta) \nabla_{\theta}^2 \log \pi_{\theta}(\tau) R(\tau) d\tau + \alpha \int \mathcal{P}_T(\tau|\theta) \nabla_{\theta} \log \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)^T R(\tau) d\tau$$

- Policy Gradient (PG)-MAML
- Challenge: Estimation of the gradient is very complicated.
- Limitations: Doesn't allow non-differentiable operators U

#### **Previous Results in MAML**

Restricted to reward function changes, not dynamics changes.

Example: Forwards + Backwards HalfCheetah



https://github.com/tristandeleu/pytorch-maml-rl

## Importance of Dynamics Adaptation

• In real world, we care more about **dynamics changes** for robust walking.





#### Minitaur RL Framework

Minitaur MDP: (Observation, Action, Reward)

- Observation: Roll + Pitch Angle, 8 Motor Angles, and sin/cos phase variable
- Action: Swing and Extension of each leg
- Reward: Velocity minus energy (torque \* angular velocity), encourages straight walking

$$r(t) = \min(v, v_{\text{max}})dt - 0.005 \sum_{i=1}^{8} \tau_i \omega_i dt$$

#### **MAML Simulation Experiment Setup**

We train the meta policy in simulation using Pybullet.

Each task samples a different combination of physics parameters:

- Body and Leg Mass
- Battery Voltage, Foot Friction
- Motor Damping, Motor Strength, Control Latency



## **PG-MAML** for Legged Robots - Challenges

PG-MAML is stochastic: Jerky random actions can be bad for real robots.

$$a \sim \pi_{\theta}(s) = \mathcal{N}(\mu, \sigma)$$

• Real world is never deterministic. If  $f(\theta)$  is objective, we always observe (non-Markovian) noise:

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$

## **Alternative: Evolutionary/Blackbox Methods**

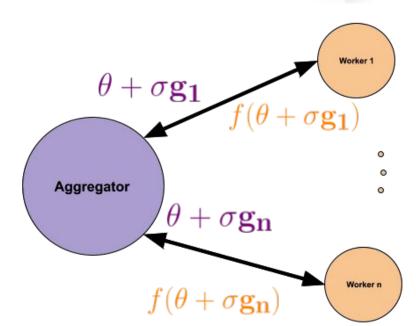


#### **Evolutionary Strategies (ES)**:

- 1. Treat total reward as blackbox function
- 2. Estimate gradients via local perturbations

$$\nabla_{\theta} \tilde{f}_{\sigma}(\theta) = \frac{1}{\sigma} \mathbb{E}_{\mathbf{g} \sim \mathcal{N}(0, \mathbf{I}_d)} [f(\theta + \sigma \mathbf{g})\mathbf{g}]$$

**Gradient of the Gaussian Smoothing of the function** 



**ESGrad**  $(f, \theta, n, \sigma)$ 

**inputs:** function f, policy  $\theta$ , number of perturbations n, precision  $\sigma$  Sample n i.i.d N(0, I) vectors  $g_1, \ldots, g_n$ ; **return**  $\frac{1}{n\sigma} \sum_{i=1}^n f(\theta + \sigma g_i) g_i$ ;

## **Evolutionary Meta Learning (ES-MAML)**

**ES-MAML**: Estimate the meta gradient using ES. (Song et al, 2019)

```
1 for t=0,1,\ldots do
2 | Sample n tasks T_1,\ldots,T_n and iid vectors \mathbf{g}_1,\ldots,\mathbf{g}_n \sim \mathcal{N}(0,\mathbf{I});
3 | foreach (T_i,\mathbf{g}_i) do | v_i \leftarrow f^{T_i}(U(\theta_t+\sigma\mathbf{g}_i,T_i))
5 | end
6 | \theta_{t+1} \leftarrow \theta_t + \frac{\beta}{\sigma^n} \sum_{i=1}^n v_i \mathbf{g}_i
```

- 7 end
- Can use non-differentiable adaptation operator *U*.
- Example: Hill-climbing, which enforces monotonic improvement (in Deterministic Environments).

#### **PG-MAML vs ES-MAML Conceptually**

#### **PG-MAML's Catch 22:**

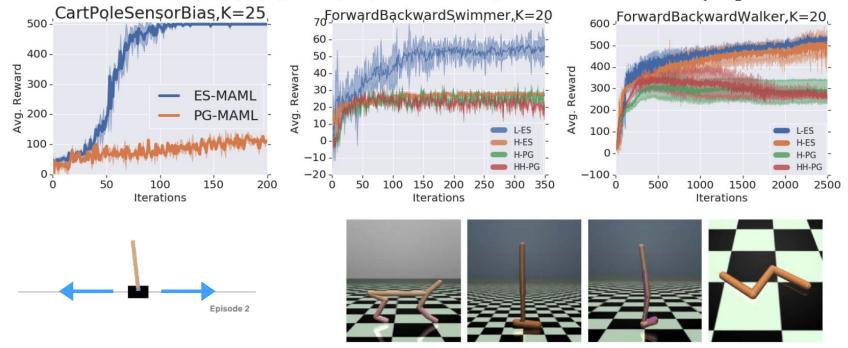
- Needs stochastic policies
  - Makes random actions
  - Noise problem becomes even worse.
- Action-based exploration
  - Relies on random actions
- Inner + Outer loop both gradient-based
- Adaptation improvement not guaranteed.

#### **ES-MAML**:

- Allows deterministic policies
  - Doesn't exacerbate noise problem.
- Parameter Space Exploration
  - Also doesn't add randomness to policy.
- Inner + Outer loop both
   Zeroth-order optimization.
- Hill-Climb Operator enforces improvement.

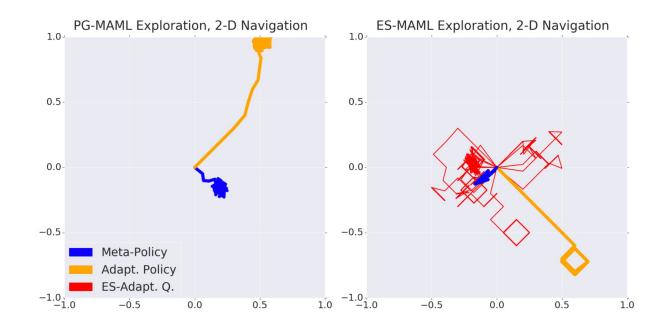
#### **ES-MAML: Continuous Control Benefits**

Figure 4: Stability comparisons of ES and PG on the Biased-Sensor CartPole and Swimmer, Walker2d environments. (L), (H), and (HH) denote linear, one- and two-hidden layer policies.



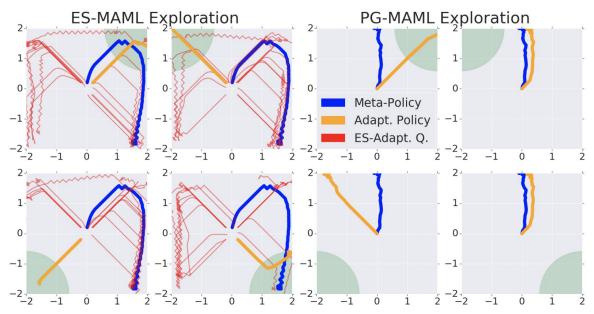
#### ES-MAML vs PG-MAML: Exploration Fundamentals

- PG-MAML makes small moves, triangulates goal location
- ES-MAML moves different directions, figures out goal from total reward



#### **ES-MAML: Exploration Benefits - 4 Corners**

- 4-Corner Task: Only give reward signal near the corner
- ES-MAML explores in parameter space + wins!

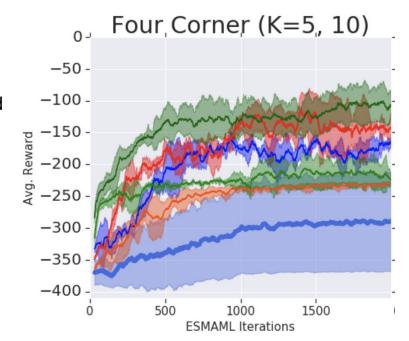


#### **ES-MAML: Different Adaptation Operators**

Hill-Climbing (HC) is strongest adaptation operator across Monte-Carlo
 Gradient Estimation (MC) and DPP-Gradient Estimation (DPP)

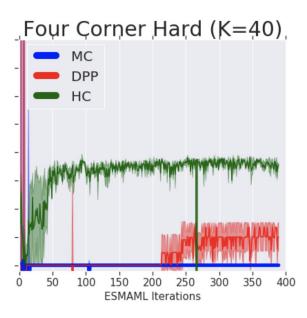
(K) Number of trials allowed in adaptation

K = 10: **Darker Colors** K = 5: **Lighter Colors** 

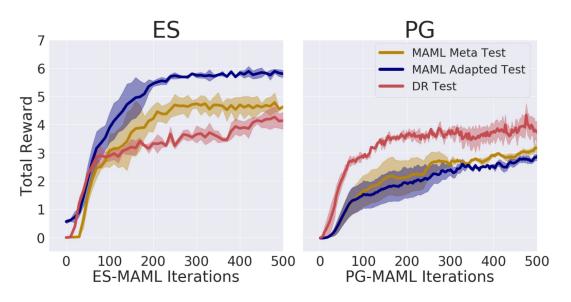


#### **ES-MAML:** Hill-Climbing

- Hard mode: What if I penalized wrong goals with -100000000?
- Hill-Climbing (HC) still works!



#### Minitaur Sim Results: ES-MAML vs PG-MAML

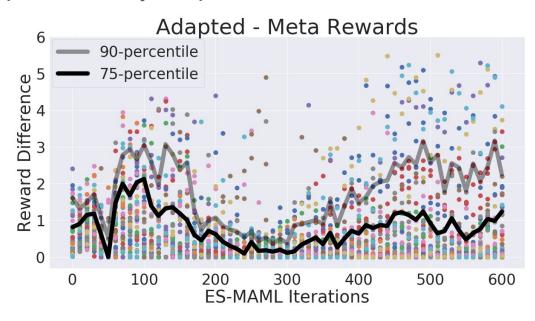


- ES-MAML > PG-MAML and Domain Randomization (DR)
- Hill-Climbing enforces Adapted > Meta, while PG-MAML has no guarantees.

#### **Minitaur Sim: Distribution Across Tasks**

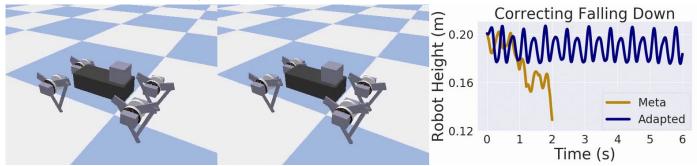
Is adaptation even needed for this benchmark?

Yes! Multiple tasks need improvement by adaptation

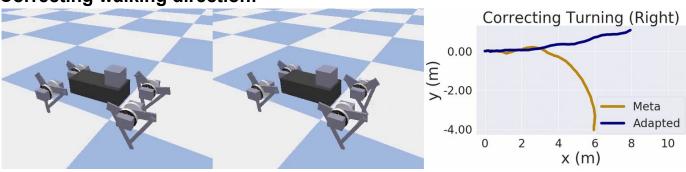


## Simulation Results: Qualitative Changes

#### **Correction from falling:**



#### **Correcting walking direction:**



## (Questions?)

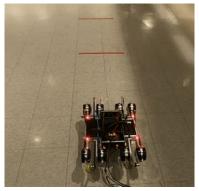
What about the noisy real world?

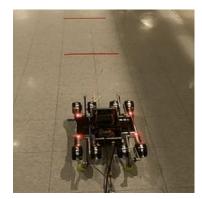
#### Adaptation in the noisy real world

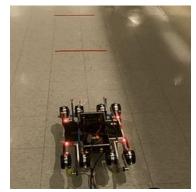
When there is noise:

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$









How do we modify hill-climbing?

## **Sequential Hill-Climbing**

#### Sequential (Original):

- Monotonic increase only in the deterministic case.
- Susceptible to noise in the real world.

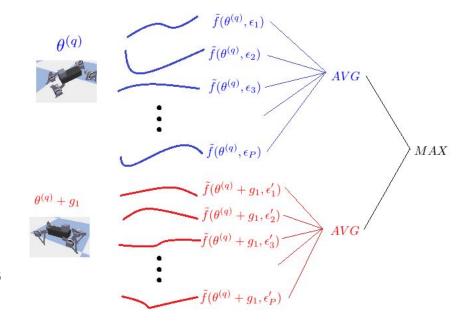
$$\theta^{(q+1)} = \underset{\theta \in \{\theta^{(q)}, \theta^{(q)} + \alpha \mathbf{g}\}}{\operatorname{argmax}} f(\theta)$$

$$\theta_{meta} \to \theta^{(1)} \to \dots \to \theta^{(Q)}$$

## **Average Hill-Climbing**

**Average** evaluation over *P* trials - Assumption of **expected objective** 

- Fails when noise is:
  - Not IID. Ex: Robot motor overheats over time.
  - Not zero mean. Ex: Robot falls randomly
- Low sample efficiency Multiple rollouts committed to single parameter
  - Need to know noise magnitude in advance



$$\underset{\theta \in \{\theta^{(q)}, \theta^{(q)} + \alpha \mathbf{g}\}}{\operatorname{argmax}} \frac{1}{P} \sum_{i=1}^{P} \widetilde{f}(\theta, \varepsilon_i)$$

#### **Understanding the Problem**

- Allowed fixed number of noisy objective evaluations T
  - Total Hill-Climb Trajectory T = Q\*P
    - Q = "length": # proposed parameter changes
    - P = "parallel": # parallel evaluations
- We don't know exactly what is signal or noise:

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$



#### **Adversarial Noise**

Big Question: How should we model noise?

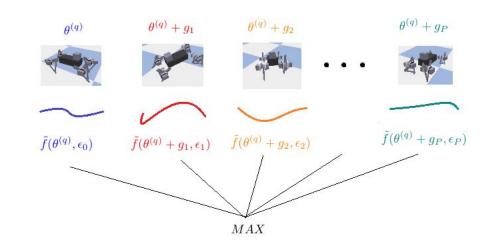
- Roughly speaking, we shouldn't.
  - Ends up being unrealistic + complicated
  - We don't know what is noise or signal anyways.
- We should just assume it's near adversarial.

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$

# **Batch Hill-Climbing**

**Batch** evaluation over *P* perturbed trials - Take the best trial, **even if noisy**:

- Sample efficient P diverse parameter samples.
- Works even in the case of adversarial noise - does not require strict noise assumptions!



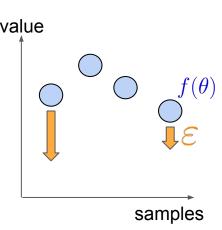
$$\theta^{(q+1)} = \underset{\theta \in \{\theta^{(q)}, \theta^{(q)} + \alpha \mathbf{g}_1, \dots, \theta^{(q)} + \alpha \mathbf{g}_P\}}{\operatorname{argmax}} \widetilde{f}(\theta, \varepsilon)$$

# **Intuitive Explanation**

- Suppose I sample P objectives
- 2. Nature **negatively corrupts** a fraction of these samples

#### Behavior of Operations:

- Summation: Even one sample can affect the outcome.
  - Easily affected by magnitude of noise
- Argmax: Affected only if argmax got chosen.
  - Independent of noise magnitude of neighbors.
  - Picking second place isn't bad either!



# **Regret Minimization**

- How do you show a method can <u>"make progress"?</u>
- Answer: <u>Regret Minimization.</u>

$$\frac{\sum_{t=0}^{T-1} (f(\theta^{opt}) - f(\theta_t))}{T}$$

Regardless of noise, our method should still converge to optimum.

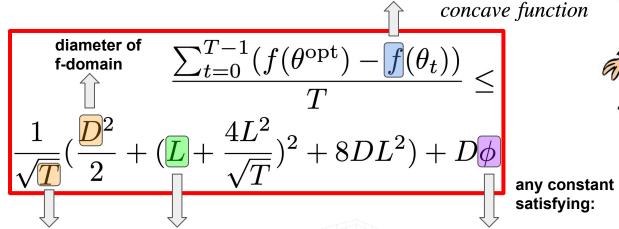
# The Mathematics of Batch Hill-Climbing

#### **Batch Hill-Climbing:**

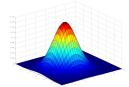
 producing strong convergence (see: right) with high probability even if substantial number of measurements is arbitrarily corrupted



standard averagingoperator is not resistant to arbitrary noise



number of upper-bound on the iterations norm on the L2-norm of the of f-gradient algorithm



 $\phi > \frac{4(\rho-\mu)\sqrt{7}}{7}$ 

 $f: \mathbb{R}^d o \mathbb{R}$  is a  $(\mu, \rho)$ -strong

upper bound on the measurement error of small-error measurements



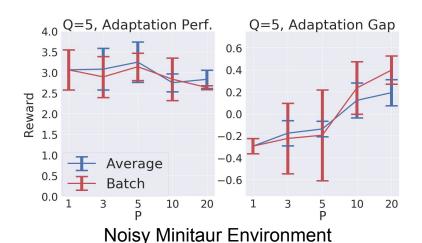
any constant satisfying:

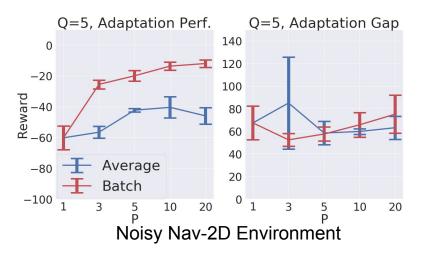
$$\sigma \le 4\sqrt{\frac{\Lambda}{7\sqrt{d}}}$$

or 
$$|f(\theta^{\text{opt}}) - f(\theta_i)| \le D\phi$$
 for some  $\theta_i$ 

# Simulation Results: Average vs Batch

- Given same number of parameter changes (Q) and parallel (P) rollouts:
  - o (Left): On Noisy Minitaur, Batch produces higher adaptation gap.
  - (Right): On Noisy Nav-2D (toy env. from (Finn et al, 2017)), Batch Produces higher raw adaptation performance.



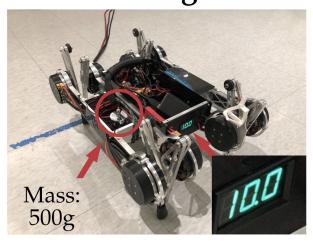


# Real-Robot Experimental Ablations

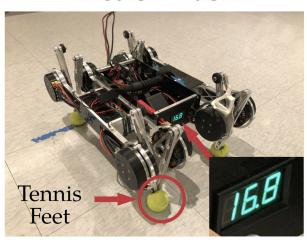
(Questions?)

# Task Setup (Reminder)

### Mass-Voltage Task

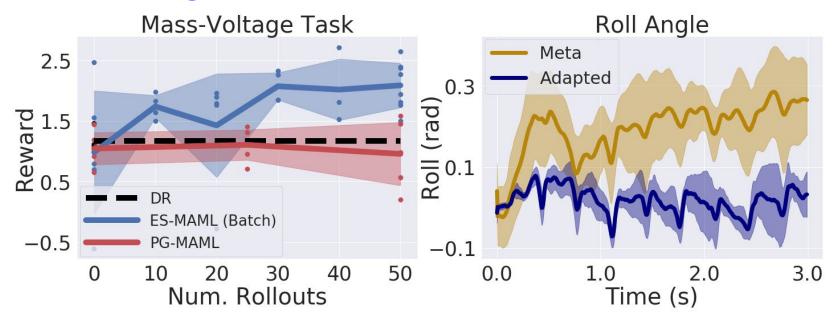


#### **Friction Task**



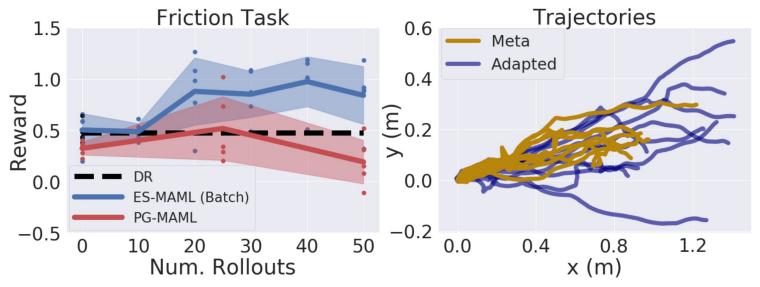
- Mass Voltage: 500g mass on side, voltage reduced to disrupt leg synchronization
- Friction: Tennis Balls on feet, to reduce gait via slipping.

# **Mass-Voltage Task**



- ES-MAML outperforms PG-MAML and Domain Randomization (DR)
- ES-MAML stabilizes the roll angle to 0 after adaptation.

## **Friction Task**



- ES-MAML outperforms PG-MAML and Domain Randomization (DR)
- ES-MAML produces longer trajectories.

#### **Conclusion**

- We demo'ed one of the <u>first successful applications of MAML on a challenging real robot task.</u>
- ES-MAML + Batch Hill-Climbing (our method) enables fast adaptation on robots.
  - Noise-resilient + Theoretically sound (Regret Minimization)
  - Benefits of Zero-Order/Blackbox methods for robotics:
    - Deterministic, stable policies
    - Exploration via parameter space



#### **Future Work**

- Continuous Adaptation:
  - Adapt robot to constantly changing environments?
- Improving Sample Efficiency:
  - Model-based techniques = less real-world data needed?
  - Better model-free adaptation operators?
- Other applications of blackbox outer + inner loops
  - NAS, Genetic Programming, Hyperparameter Optimization, etc.

#### **More Details**

Please see our following links for more information:

- arXiv (Robot Application Paper at IROS 2020): <a href="https://arxiv.org/abs/2003.01239">https://arxiv.org/abs/2003.01239</a>
- arXiv (ES-MAML Paper at ICLR 2020): <a href="https://arxiv.org/abs/1910.01215">https://arxiv.org/abs/1910.01215</a>
- ES-MAML Code: <u>https://github.com/google-research/google-research/tree/master/es\_maml</u>
- Google Al Blog: <a href="https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html">https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html</a>
- Experiment Video: <a href="https://youtu.be/\_QPMCDdFC3E">https://youtu.be/\_QPMCDdFC3E</a>
- Talk Video: <a href="https://youtu.be/-\_GP5ghLy-w">https://youtu.be/-\_GP5ghLy-w</a>
- Code: <a href="https://github.com/google-research/google-research/tree/master/es-maml">https://github.com/google-research/google-research/tree/master/es-maml</a>

# Thank you!