Closing the Sim-To-Real Gap with Evolutionary Meta-Learning

Xingyou (Richard) Song Yuxiang Yang Krzysztof Choromanski Ken Caluwaerts Wenbo Gao Chelsea Finn Jie Tan Aldo Pacchiano Yunhao Tang

Locomotion

Locomotion is one of the most fundamental skills of all land animals:

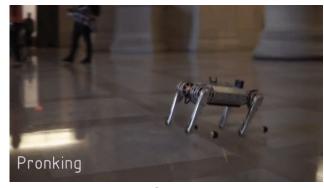
Elephants

Humans

Robot Locomotion

So far, Robot Locomotion research has displayed an impressive set of results to reproduce this natural skill.

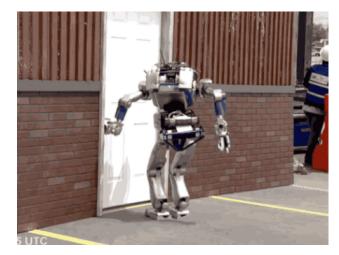
Boston Dynamics Spot



MIT Cheetah

Slight Changes in Dynamics

But unfortunately, robots can be fragile to slight changes in dynamics.

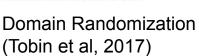


DARPA Robotics Challenge, 2015

Asimo Robot, 2006

Prior Works: Robustness to Real World Changes

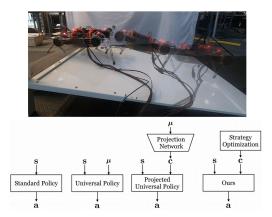




- Only trains in sim
- Assumes all tasks use same optimal policy.

Model Based Adaptation (Nagabandi et al, 2019)

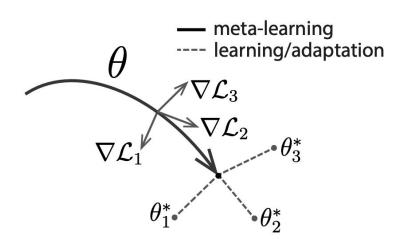
- Compounding error with dynamics models
- Acquiring an accurate model can be difficult.



Meta Strategy Optimization (Yu et al, 2020)

- Latent context vectors appended to the state
- Context may not contain necessary information

But what about MAML?

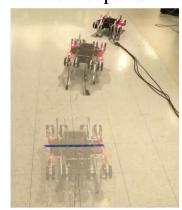


Our Strategy: MAML + Adaptation w/ Real world Data

- Train most skills in sim: "meta-policy"
- Fine-Tune + Adapt w/ a little real world data: "adapted-policy"
- Model-Free: Only needs feed-forward policy mapping state -> action.

Before Adaptation

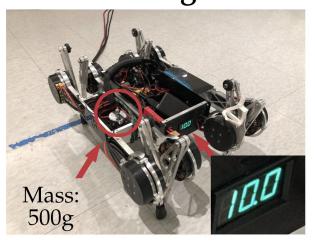
After Adaptation



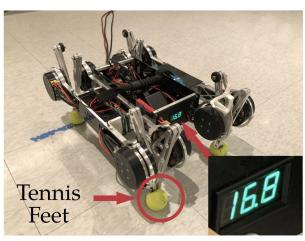
Minitaur Robot adapts to mass imbalances and voltage changes.

Task Setup

Mass-Voltage Task

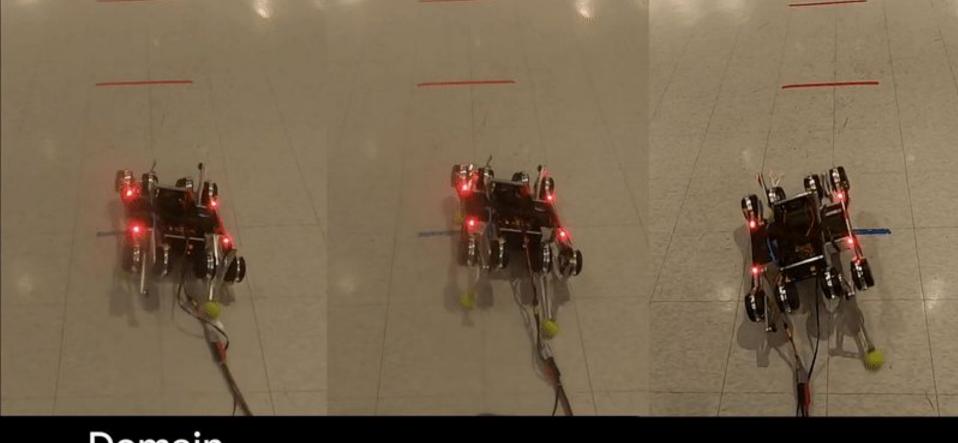


Friction Task



- Mass Voltage: 500g mass on side, voltage reduced to disrupt leg synchronization
- Friction: Tennis Balls on feet, to reduce gait via slipping.

The initial policy shifts to the right.



Domain Randomization

PG-MAML

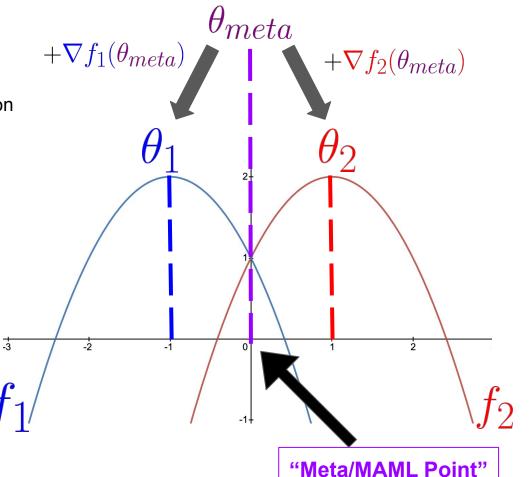
Our Method

How did we get here? (Questions?)

Intuition of MAML

Problem: Objectives/tasks don't have common optima.

Solution: Find a Meta-Point!



Reaching the Meta-Point

Define Adaptation Operator/Inner Loop: $U(\theta,f)=\theta+
abla f(\theta)$

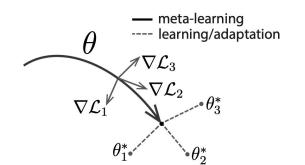
Optimize:

$$f_1(\theta) + f_2(\theta)$$

$$f_1(U(\theta, f_1)) + f_2(U(\theta, f_2))$$

Formalism of Meta-Learning

Adaptation uses little data



$$\max_{\theta} J(\theta) := \mathbb{E}_{T \sim \mathcal{P}(\mathcal{T})} [\mathbb{E}_{\tau' \sim \mathcal{P}_T(\tau'|\theta')} [R_T(\tau')]] \xrightarrow{\text{bilevel optimization formulation}} \theta' = U(\theta, T) = \theta + \alpha \nabla_{\theta} \mathbb{E}_{\tau \sim \mathcal{P}_T(\tau|\theta)} [R(\tau)]$$
 one-shot gradient-based adaptation operator

Gradient-Based Meta Learning is Complicated!

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{T \sim \mathcal{P}(\mathcal{T})} [\mathbb{E}_{r' \sim \mathcal{P}_T(\tau'|\theta')} [\nabla_{\theta'} \log \mathcal{P}_T(\tau'|\theta') R(\tau') \nabla_{\theta} U(\theta, T)]]$$

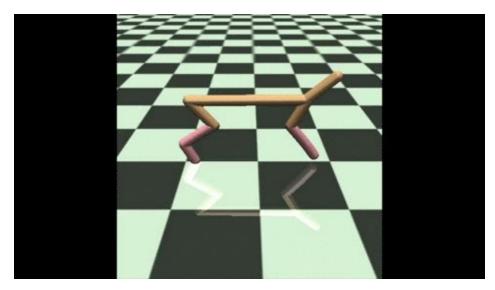
$$\boxed{\nabla_{\theta} U} = \mathbf{I} + \alpha \int \mathcal{P}_T(\tau|\theta) \nabla_{\theta}^2 \log \pi_{\theta}(\tau) R(\tau) d\tau + \alpha \int \mathcal{P}_T(\tau|\theta) \nabla_{\theta} \log \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)^T R(\tau) d\tau$$

- Policy Gradient (PG)-MAML
- Challenge: Estimation of the gradient is very complicated.
- Limitations: Doesn't allow non-differentiable operators U

Previous Results in MAML

Restricted to reward function changes, not dynamics changes.

Example: Forwards + Backwards HalfCheetah



https://github.com/tristandeleu/pytorch-maml-rl

Importance of Dynamics Adaptation

• In real world, we care more about **dynamics changes** for robust walking.

Minitaur RL Framework

Minitaur MDP: (Observation, Action, Reward)

- Observation: Roll + Pitch Angle, 8 Motor Angles, and sin/cos phase variable
- Action: Swing and Extension of each leg
- Reward: Velocity minus energy (torque * angular velocity), encourages straight walking

$$r(t) = \min(v, v_{\text{max}})dt - 0.005 \sum_{i=1}^{8} \tau_i \omega_i dt$$

MAML Simulation Experiment Setup

We train the meta policy in simulation using Pybullet.

Each task samples a different combination of physics parameters:

- Body and Leg Mass
- Battery Voltage, Foot Friction
- Motor Damping, Motor Strength, Control Latency

PG-MAML for Legged Robots - Challenges

PG-MAML is stochastic: Jerky random actions can be bad for real robots.

$$a \sim \pi_{\theta}(s) = \mathcal{N}(\mu, \sigma)$$

• Real world is never deterministic. If $f(\theta)$ is objective, we always observe (non-Markovian) noise:

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$

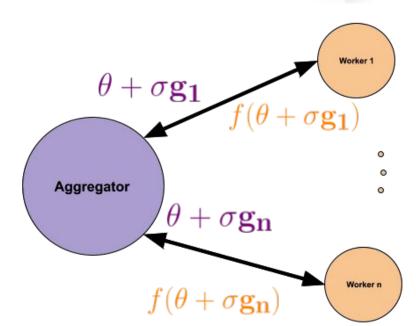
Alternative: Evolutionary/Blackbox Methods

Evolutionary Strategies (ES):

- 1. Treat total reward as blackbox function
- 2. Estimate gradients via local perturbations

$$\nabla_{\theta} \tilde{f}_{\sigma}(\theta) = \frac{1}{\sigma} \mathbb{E}_{\mathbf{g} \sim \mathcal{N}(0, \mathbf{I}_d)} [f(\theta + \sigma \mathbf{g})\mathbf{g}]$$

Gradient of the Gaussian Smoothing of the function



ESGrad (f, θ, n, σ)

inputs: function f, policy θ , number of perturbations n, precision σ Sample n i.i.d N(0, I) vectors g_1, \ldots, g_n ; **return** $\frac{1}{n\sigma} \sum_{i=1}^n f(\theta + \sigma g_i) g_i$;

Evolutionary Meta Learning (ES-MAML)

ES-MAML: Estimate the meta gradient using ES. (Song et al, 2019)

```
1 for t=0,1,\ldots do
2 | Sample n tasks T_1,\ldots,T_n and iid vectors \mathbf{g}_1,\ldots,\mathbf{g}_n \sim \mathcal{N}(0,\mathbf{I});
3 | foreach (T_i,\mathbf{g}_i) do | v_i \leftarrow f^{T_i}(U(\theta_t+\sigma\mathbf{g}_i,T_i))
5 | end
6 | \theta_{t+1} \leftarrow \theta_t + \frac{\beta}{\sigma^n} \sum_{i=1}^n v_i \mathbf{g}_i
```

- 7 end
- Can use non-differentiable adaptation operator *U*.
- Example: Hill-climbing, which enforces monotonic improvement (in Deterministic Environments).

PG-MAML vs ES-MAML Conceptually

PG-MAML's Catch 22:

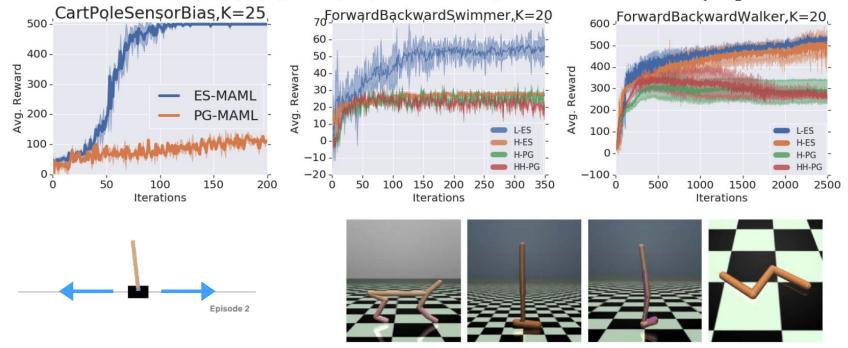
- Needs stochastic policies
 - Makes random actions
 - Noise problem becomes even worse.
- Action-based exploration
 - Relies on random actions
- Inner + Outer loop both gradient-based
- Adaptation improvement not guaranteed.

ES-MAML:

- Allows deterministic policies
 - Doesn't exacerbate noise problem.
- Parameter Space Exploration
 - Also doesn't add randomness to policy.
- Inner + Outer loop both
 Zeroth-order optimization.
- Hill-Climb Operator enforces improvement.

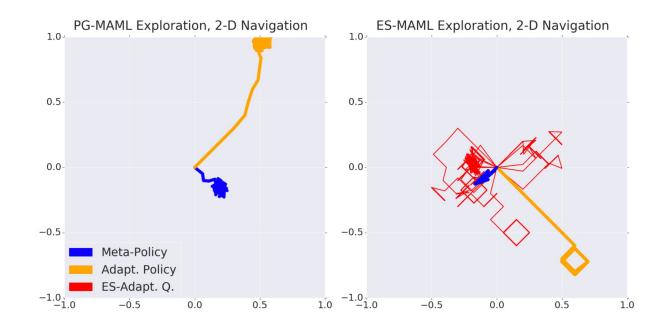
ES-MAML: Continuous Control Benefits

Figure 4: Stability comparisons of ES and PG on the Biased-Sensor CartPole and Swimmer, Walker2d environments. (L), (H), and (HH) denote linear, one- and two-hidden layer policies.



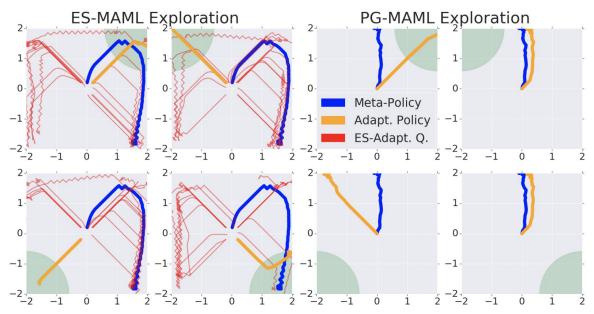
ES-MAML vs PG-MAML: Exploration Fundamentals

- PG-MAML makes small moves, triangulates goal location
- ES-MAML moves different directions, figures out goal from total reward



ES-MAML: Exploration Benefits - 4 Corners

- 4-Corner Task: Only give reward signal near the corner
- ES-MAML explores in parameter space + wins!

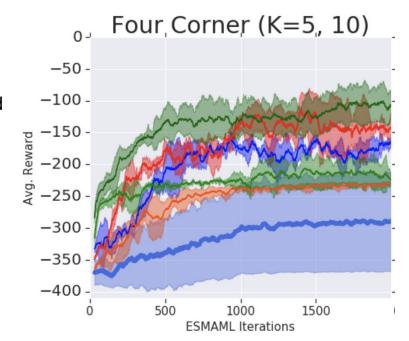


ES-MAML: Different Adaptation Operators

Hill-Climbing (HC) is strongest adaptation operator across Monte-Carlo
 Gradient Estimation (MC) and DPP-Gradient Estimation (DPP)

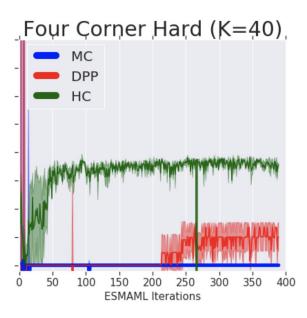
(K) Number of trials allowed in adaptation

K = 10: **Darker Colors** K = 5: **Lighter Colors**

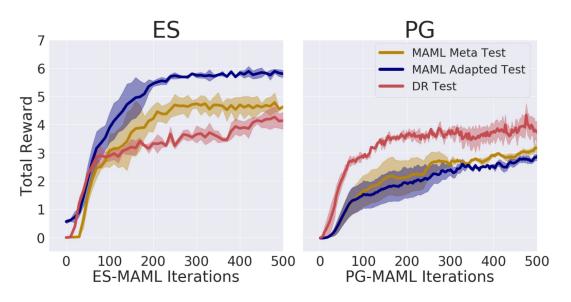


ES-MAML: Hill-Climbing

- Hard mode: What if I penalized wrong goals with -100000000?
- Hill-Climbing (HC) still works!



Minitaur Sim Results: ES-MAML vs PG-MAML

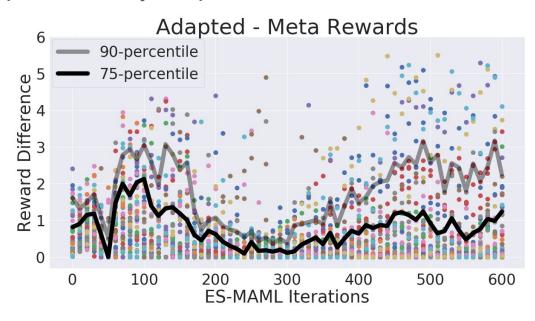


- ES-MAML > PG-MAML and Domain Randomization (DR)
- Hill-Climbing enforces Adapted > Meta, while PG-MAML has no guarantees.

Minitaur Sim: Distribution Across Tasks

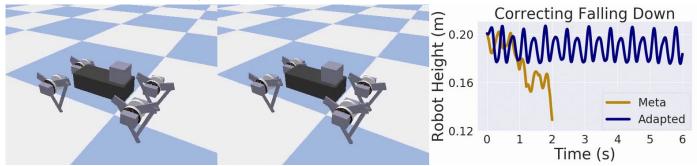
Is adaptation even needed for this benchmark?

Yes! Multiple tasks need improvement by adaptation

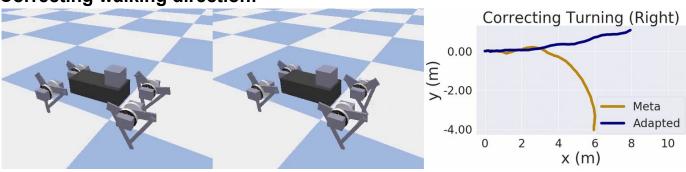


Simulation Results: Qualitative Changes

Correction from falling:



Correcting walking direction:



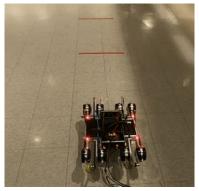
(Questions?)

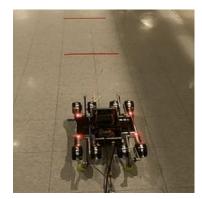
What about the noisy real world?

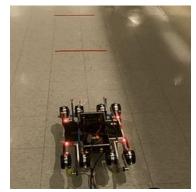
Adaptation in the noisy real world

When there is noise:

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$







How do we modify hill-climbing?

Sequential Hill-Climbing

Sequential (Original):

- Monotonic increase only in the deterministic case.
- Susceptible to noise in the real world.

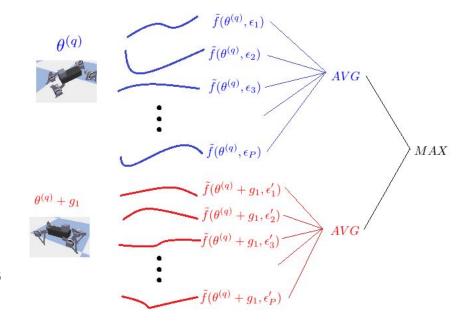
$$\theta^{(q+1)} = \underset{\theta \in \{\theta^{(q)}, \theta^{(q)} + \alpha \mathbf{g}\}}{\operatorname{argmax}} f(\theta)$$

$$\theta_{meta} \to \theta^{(1)} \to \dots \to \theta^{(Q)}$$

Average Hill-Climbing

Average evaluation over *P* trials - Assumption of **expected objective**

- Fails when noise is:
 - Not IID. Ex: Robot motor overheats over time.
 - Not zero mean. Ex: Robot falls randomly
- Low sample efficiency Multiple rollouts committed to single parameter
 - Need to know noise magnitude in advance



$$\underset{\theta \in \{\theta^{(q)}, \theta^{(q)} + \alpha \mathbf{g}\}}{\operatorname{argmax}} \frac{1}{P} \sum_{i=1}^{P} \widetilde{f}(\theta, \varepsilon_i)$$

Understanding the Problem

- Allowed fixed number of noisy objective evaluations T
 - Total Hill-Climb Trajectory T = Q*P
 - Q = "length": # proposed parameter changes
 - P = "parallel": # parallel evaluations
- We don't know exactly what is signal or noise:

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$

Adversarial Noise

Big Question: How should we model noise?

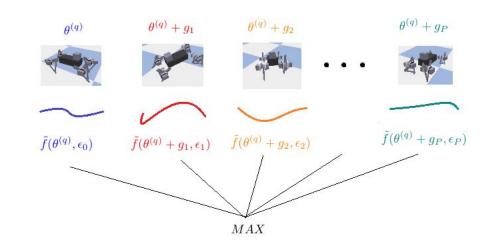
- Roughly speaking, we shouldn't.
 - Ends up being unrealistic + complicated
 - We don't know what is noise or signal anyways.
- We should just assume it's near adversarial.

$$\widetilde{f}(\theta,\varepsilon) = f(\theta) + \varepsilon$$

Batch Hill-Climbing

Batch evaluation over *P* perturbed trials - Take the best trial, **even if noisy**:

- Sample efficient P diverse parameter samples.
- Works even in the case of adversarial noise - does not require strict noise assumptions!



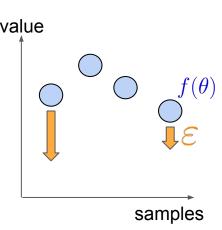
$$\theta^{(q+1)} = \underset{\theta \in \{\theta^{(q)}, \theta^{(q)} + \alpha \mathbf{g}_1, \dots, \theta^{(q)} + \alpha \mathbf{g}_P\}}{\operatorname{argmax}} \widetilde{f}(\theta, \varepsilon)$$

Intuitive Explanation

- Suppose I sample P objectives
- 2. Nature **negatively corrupts** a fraction of these samples

Behavior of Operations:

- Summation: Even one sample can affect the outcome.
 - Easily affected by magnitude of noise
- Argmax: Affected only if argmax got chosen.
 - Independent of noise magnitude of neighbors.
 - Picking second place isn't bad either!



Regret Minimization

- How do you show a method can <u>"make progress"?</u>
- Answer: <u>Regret Minimization.</u>

$$\frac{\sum_{t=0}^{T-1} (f(\theta^{opt}) - f(\theta_t))}{T}$$

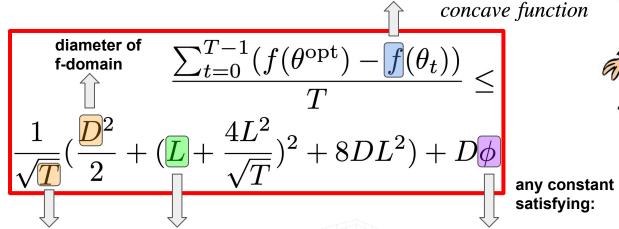
Regardless of noise, our method should still converge to optimum.

The Mathematics of Batch Hill-Climbing

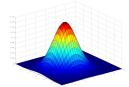
Batch Hill-Climbing:

 producing strong convergence (see: right) with high probability even if substantial number of measurements is arbitrarily corrupted

standard averagingoperator is not resistant to arbitrary noise



number of upper-bound on the iterations norm on the L2-norm of the of f-gradient algorithm



 $\phi > \frac{4(\rho-\mu)\sqrt{7}}{7}$

 $f: \mathbb{R}^d o \mathbb{R}$ is a (μ, ρ) -strong

upper bound on the measurement error of small-error measurements

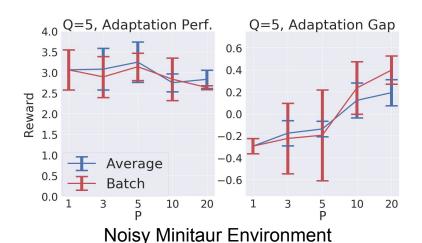
any constant satisfying:

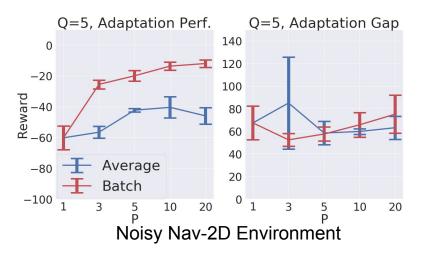
$$\sigma \le 4\sqrt{\frac{\Lambda}{7\sqrt{d}}}$$

or
$$|f(\theta^{\text{opt}}) - f(\theta_i)| \le D\phi$$
 for some θ_i

Simulation Results: Average vs Batch

- Given same number of parameter changes (Q) and parallel (P) rollouts:
 - o (Left): On Noisy Minitaur, Batch produces higher adaptation gap.
 - (Right): On Noisy Nav-2D (toy env. from (Finn et al, 2017)), Batch Produces higher raw adaptation performance.



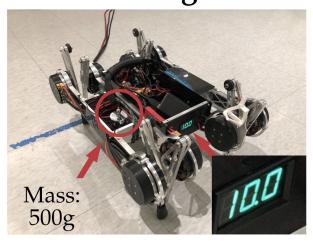


Real-Robot Experimental Ablations

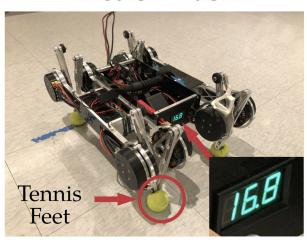
(Questions?)

Task Setup (Reminder)

Mass-Voltage Task

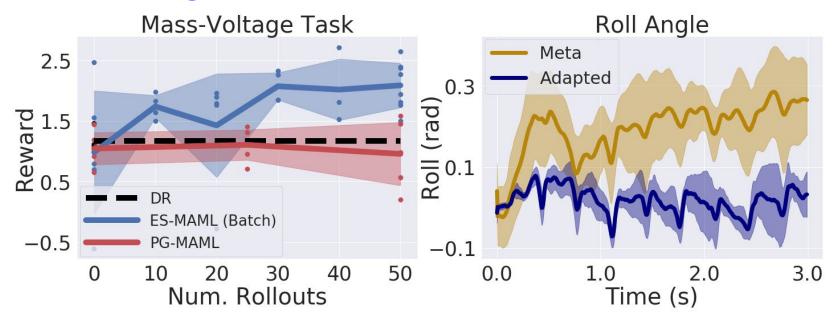


Friction Task



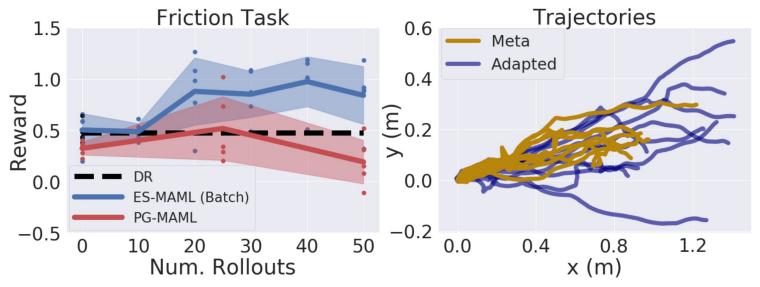
- Mass Voltage: 500g mass on side, voltage reduced to disrupt leg synchronization
- Friction: Tennis Balls on feet, to reduce gait via slipping.

Mass-Voltage Task



- ES-MAML outperforms PG-MAML and Domain Randomization (DR)
- ES-MAML stabilizes the roll angle to 0 after adaptation.

Friction Task



- ES-MAML outperforms PG-MAML and Domain Randomization (DR)
- ES-MAML produces longer trajectories.

Conclusion

- We demo'ed one of the <u>first successful applications of MAML on a challenging real robot task.</u>
- ES-MAML + Batch Hill-Climbing (our method) enables fast adaptation on robots.
 - Noise-resilient + Theoretically sound (Regret Minimization)
 - Benefits of Zero-Order/Blackbox methods for robotics:
 - Deterministic, stable policies
 - Exploration via parameter space

Future Work

- Continuous Adaptation:
 - Adapt robot to constantly changing environments?
- Improving Sample Efficiency:
 - Model-based techniques = less real-world data needed?
 - Better model-free adaptation operators?
- Other applications of blackbox outer + inner loops
 - NAS, Genetic Programming, Hyperparameter Optimization, etc.

More Details

Please see our following links for more information:

- arXiv (Robot Application Paper at IROS 2020): https://arxiv.org/abs/2003.01239
- arXiv (ES-MAML Paper at ICLR 2020): https://arxiv.org/abs/1910.01215
- ES-MAML Code: <u>https://github.com/google-research/google-research/tree/master/es_maml</u>
- Google Al Blog: https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html
- Experiment Video: https://youtu.be/_QPMCDdFC3E
- Talk Video: https://youtu.be/-_GP5ghLy-w
- Code: https://github.com/google-research/google-research/tree/master/es-maml

Thank you!