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Locomotion

Locomotion is one of the most fundamental skills of all land animals:

Elephants



Robot Locomotion

So far, Robot Locomotion research has displayed an impressive set of results to
reproduce this natural skill.
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Slight Changes in Dynamics

But unfortunately, robots can be fragile to slight changes in dynamics.

e
DARPA Robotics Challenge, 2015 Asimo Robot, 2006




Prior Works: Robustness to Real World Changes
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Domain Randomization
(Tobin et al, 2017)
e Only trains in sim
e Assumes all tasks use
same optimal policy.

Task: lost leg

Model Based Adaptation
(Nagabandi et al, 2019)
e Compounding error with
dynamics models
e Acquiring an accurate
model can be difficult.

!

Meta Strategy Optimization
(Yu et al, 2020)
e Latent context vectors
appended to the state
e Context may not
contain necessary
information



But what about MAML?

— meta-learning
---- learning/adaptation
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Our Strategy: MAML + Adaptation w/ Real world
Data

e Train most skills in sim: “meta-policy”
e Fine-Tune + Adapt w/ a little real world data: “adapted-policy”
e Model-Free: Only needs feed-forward policy mapping state -> action.

Before Adaptation After Adaptation

¢

Minitaur Robot adapts to mass imbalances and voltage changes.



Task Setup

Mass-Voltage Task Friction Task
- — |

e Mass Voltage: 500g mass on side, voltage reduced to disrupt leg
synchronization
e Friction: Tennis Balls on feet, to reduce gait via slipping.



After 30 Episodes After 50 Episodes

The initial policy shifts to the right.



PG-MAML Our Method

Randomization




How did we get here?
(Questions?)



Intuition of MAML

Problem: Objectives/tasks don’t have common

optima.

Solution: Find a Meta-Point!
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“Meta/MAML Point”




Reaching the Meta-Point

Define Adaptation Operator/inner Loop: U(@, f) — 9 —I— Vf(@)

Optimize:

f1(0) + f2(0)
fl(U(Qa fl)) + fQ(U(97 fQ))

vV 4



— meta-learning
--- learning/adaptation
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e Adaptation uses little data AN
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Gradient-Based Meta Learning is Complicated!

VoJ(0) = Epop) [Brpp(1)[ Ve log Pr(r'|0")R(T")VeU (0, T)]]

VoU|=1+« / Pr(r]0)V2logme(T)R(T)dT + / Pr(7]0)Vglogme(1) Vg log me(1)! R(T)dr

e Policy Gradient (PG)-MAML

e Challenge: Estimation of the gradient is very complicated.
e Limitations: Doesn’t allow non-differentiable operators U




Previous Results in MAML

Restricted to reward function changes, not dynamics changes.

Example: Forwards + Backwards HalfCheetah
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https://github.com/tristandeleu/pytorch-mamil-rl



https://github.com/tristandeleu/pytorch-maml-rl

Importance of Dynamics Adaptation

e In real world, we care more about dynamics changes for robust walking.




Minitaur RL Framework

Minitaur MDP: (Observation, Action, Reward)

e Observation: Roll + Pitch Angle, 8 Motor Angles, and sin/cos phase variable
e Action: Swing and Extension of each leg
e Reward: Velocity minus energy (torque * angular velocity), encourages straight

walking

8
r(t) = min(v, vyax)dt — 0.005 Z Tysat

=1



MAML Simulation Experiment Setup

We train the meta policy in simulation using Pybullet.

Each task samples a different combination of physics
parameters:

e Body and Leg Mass
e Battery Voltage, Foot Friction
e Motor Damping, Motor Strength, Control Latency




PG-MAML for Legged Robots - Challenges

e PG-MAML is stochastic: Jerky random actions can be bad for real robots.

a~ my(s) =N(u,o)

e Real world is never deterministic. If f(0) is objective, we always observe
(non-Markovian) noise:

~

f(8,e) = f(0) +¢



Alternative: Evolutionary/Blackbox Methods ‘

Evolutionary Strategies (ES):

1. Treat total reward as blackbox function
2. Estimate gradients via local perturbations

v@fa(e) — :
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Egnr01,)f(0 + 0g)g]

|

%

Gradient of the Gaussian Smoothing of the function

ESGrad (f,60,n,0)
inputs: function f, policy €, number of perturbations n, precision o
Sample n i.i.d N (0, I) vectors g1, . .., gn;

return - Y7, (0 + 0gi)gi;



Evolutionary Meta Learning (ES-MAML)

ES-MAML.: Estimate the meta gradient using ES. (Song et al, 2019)
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fort=0,1,...do
Sample n tasks 71, ...,7T, and 1id
vectors g1, ..., &n ~ N(0,1);
foreach (7T, g;) do
| v < |f U0+ o8, T)) |
end
Or 1 < 0 + % > i Vi

end

Can use non-differentiable adaptation operator U.

(9+O'g1

Performs U (0 + 0gy,T)

Example: Hill-climbing, which enforces monotonic improvement (in

Deterministic Environments).



PG-MAML vs ES-MAML Conceptually

PG-MAML’s Catch 22.

e Needs stochastic policies

o Makes random actions
o Noise problem becomes

even worse.
e Action-based exploration

o Relies on random actions

e Inner + Outer loop both
gradient-based

e Adaptation improvement not

guaranteed.

ES-MAML.:

Allows deterministic policies
o Doesn't exacerbate noise
problem.
Parameter Space Exploration
o Also doesn't add
randomness to policy.
Inner + Outer loop both
Zeroth-order optimization.
Hill-Climb Operator enforces
improvement.



ES-MAML: Continuous Control Benefits

Figure 4: Stability comparisons of ES and PG on the Biased-Sensor CartPole and Swimmer,
Walker2d environments. (L), (H), and (HH) denote linear, one- and two-hidden layer policies.
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ES-MAML vs PG-MAML.: Exploration Fundamentals

e PG-MAML makes small moves, triangulates goal location
e ES-MAML moves different directions, figures out goal from total reward

PG-MAML Exploration, 2-D Navigation
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ES-MAML: Exploration Benefits - 4 Corners

e 4-Corner Task: Only give reward signal near the corner
e ES-MAML explores in parameter space + wins!
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ES-MAML: Different Adaptation Operators

e Hill-Climbing (HC) is strongest adaptation operator across Monte-Carlo
Gradient Estimation (MC) and DPP-Gradient Estimation (DPP)

o, Four Corner (K=5, 10)

(K) Number of trials allowed
in adaptation

Avg. Reward
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ES-MAML.: Hill-Climbing

e Hard mode: What if | penalized wrong goals with -1000000007?
e Hill-Climbing (HC) still works!

_Four Corner Hard (K=40),
a» MC

|| == DPP
-| e HC
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Minitaur Sim Results: ES-MAML vs PG-MAML

ES PG

== MAML Meta Test
e MAML Adapted Test
== DR Test

Total Reward
o = N w B u (@) ~

0 100 200 300 400 500 O 100 200 300 400 500
ES-MAML lterations PG-MAML lIterations

e ES-MAML > PG-MAML and Domain Randomization (DR)
e Hill-Climbing enforces Adapted > Meta, while PG-MAML has no guarantees.



Minitaur Sim: Distribution Across Tasks

Is adaptation even needed for this benchmark?

Yes! Multiple tasks need improvement by adaptation
Adapted - Meta Rewards
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Simulation Results: Qualitative Changes

Correction from falling:
Correcting Falling Down
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What about the noisy real world?
(Questions?)



Adaptation in the noisy real world

When there is noise:

How do we modify hill-climbing?



Sequential Hill-Climbing

Sequential (Original):

e Monotonic increase only in the deterministic case.
e Susceptible to noise in the real world.

glat+l) = argmax f(6)
0c{6(2),0(2) ag}

Ometa — o) — . — 9@



Average Hill-Climbing

o~ 09.a)
. . . 9((1) ripla)
Average evaluation over P trials - Assumption , hi et TR
of expected objective ? .« F(6'7, e3)
e Fails when noise is: * .
(9 MAX

o Not IID. Ex: Robot motor overheats Wl
over time. o e (0 4 g1 )
o Not zero mean. Ex: Robot falls T (0 + g1, )
randomly w .__f———.fw“'" +91.€)
e Low sample efficiency - Multiple rollouts =
committed to single parameter ~— (6" +g1,¢p)

o Need to know noise magnitude in

advance P Y
9(a+1) — argmax % > i—1 S(0,€5)
0c{0(2),0(2) fag}



Understanding the Problem

e Allowed fixed number of noisy objective evaluations T
o Total Hill-Climb Trajectory T = Q*P
m Q ="“length”. # proposed parameter changes
m P ="“parallel’: # parallel evaluations
e \We don’t know exactly what is signal or noise:

~

f(0,e)=f(0) +e




Adversarial Noise

Big Question: How should we model noise?

e Roughly speaking, we shouldn’t.
o Ends up being unrealistic + complicated
o We don’t know what is noise or signal anyways.

e \We should just assume it's near adversarial.

76,¢) = £(6) + &7




Batch Hill-Climbing

Batch evaluation over P perturbed trials o o)+ g1 0 + g
- Take the best trial, even if noisy: W yﬂ m e ﬂw
e Sample efficient - P diverse —~— 7N N -

F (o o . (09 + gp,ep)

parameter samples. e A ) s

e Works even in the case of W
adversarial noise - does not require
strict noise assumptions!

platl) — argmax F(6,¢)
0c{0(2),0(20) 4ag;,...,000) +agp}



Intuitive Explanation

1.

2. Nature

Suppose | sample P objectives

Behavior of Operations:

Summation: Even one sample can affect the outcome.

(@)

Argmax: Affected only if argmax got chosen.

(@)

(@)

Easily affected by magnitude of noise

Independent of noise magnitude of neighbors.
Picking second place isn’t bad either!

a fraction of these samples 51,

@,
O _f)
O o
ﬂ §e
samplés



Regret Minimization

e How do you show a method can “make progress”?
e Answer: Regret Minimization.

o (F(0°PY) — £(6y))
ik

Regardless of noise, our method should still converge to optimum.




The Mathematics of Batch Hill-Climbing

Batch Hill-Climbing:
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Simulation Results: Average vs Batch

e Given same number of parameter changes (Q) and parallel (P) rollouts:
o (Left): On Noisy Minitaur, Batch produces higher adaptation gap.
o (Right): On Noisy Nav-2D (toy env. from (Finn et al, 2017)), Batch Produces
higher raw adaptation performance.
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Real-Robot Experimental Ablations
(Questions?)



Task Setup (Reminder)

Mass-Voltage Task Friction Task
- - |

e Mass Voltage: 500g mass on side, voltage reduced to disrupt leg
synchronization
e Friction: Tennis Balls on feet, to reduce gait via slipping.



Mass-Voltage Task

Mass-Voltage Task Roll Angle
f - Meta
0.3 Adapted

B 3
© =
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ms mm R ° ad
s ES-MAML (Batch)
—0.5 e PG-MAML —0.1
0 10 20 30 40 50 0.0 1. 2.0 3.0
Num. Rollouts Time (s)

e ES-MAML outperforms PG-MAML and Domain Randomization (DR)
ES-MAML stabilizes the roll angle to 0 after adaptation.



Friction Task

15 Friction Task 06 Trajectories
= Meta
- Adapted

0.0 ™ == DR e o0

e ES-MAML (Batch) i
e PG-MAML 05
—0:2 0 10 20 30 40 50 0.0 0.4 0.8 1.2
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e ES-MAML outperforms PG-MAML and Domain Randomization (DR)
ES-MAML produces longer trajectories.



Conclusion

e We demo’ed one of the first successful applications of MAML on a
challenging real robot task.

e ES-MAML + Batch Hill-Climbing (our method) enables fast adaptation on
robots.
o Noise-resilient + Theoretically sound (Regret Minimization)
o Benefits of Zero-Order/Blackbox methods for robotics:
m Deterministic, stable policies
m Exploration via parameter space




Future Work

e Continuous Adaptation:
o Adapt robot to constantly changing environments?
e Improving Sample Efficiency:
o Model-based techniques = less real-world data needed?
o Better model-free adaptation operators?
e Other applications of blackbox outer + inner loops
o NAS, Genetic Programming, Hyperparameter Optimization, etc.



More Details

Please see our following links for more information:

arXiv (Robot Application Paper at IROS 2020): https://arxiv.org/abs/2003.01239
arXiv (ES-MAML Paper at ICLR 2020): https://arxiv.org/abs/1910.01215
ES-MAML Code:
https://github.com/gooqgle-research/google-research/tree/master/es_maml
e Google Al Blog:
https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html
e Experiment Video: https://youtu.be/ QPMCDdFC3E
Talk Video: https://youtu.be/- _GP5ghLy-w
Code: https://github.com/google-research/google-research/tree/master/es _maml



https://arxiv.org/abs/2003.01239
https://arxiv.org/abs/1910.01215
https://github.com/google-research/google-research/tree/master/es_maml
https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html
https://youtu.be/_QPMCDdFC3E
https://youtu.be/-_GP5ghLy-w
https://github.com/google-research/google-research/tree/master/es_maml

Thank you!



