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Example Benchmarks around RL “Generalization”

Paper Bibliography in Appendix.

MineRL
MetaWorld

Gym Retro ProcGen



Our “Generalization” Definition

● Zero-Shot: Finite training set of MDPs, evaluate on test set of MDPs.
● Distributional:  All MDP’s sampled from distribution
● Overfitting: Reward gap b/w train + test

K. Cobbe et al. Quantifying Generalization in Reinforcement Learning (ICML, 2019)



What Causes Overfitting in RL?



Sonic the Hedgehog - Gym Retro

● Sonic the HedgeHog (Gym Retro): Saliency (Red) suggests overfitting to 
background



Sonic the Hedgehog - Gym Retro

● Agent can train even if it only saw the timer!

Test Rewards



Sonic in Action - Example Video

https://docs.google.com/file/d/1IPahlZkh1bXMjDbjpUYZjPe0pFO5WS4E/preview


Observational Overfitting

● Any single MDP -> distribution of 
MDP’s via constructing “observation 
functions”

● f-function stays the same
● g-function changes per level



Simplest Possible Benchmark: LQR

● Take any standard LQR

High-Dimensional 
Distractors

Wtheta varies across 
each domain d 

causing overfitting.

Figures adapted from Rishabh Agarwal.



Another Simple Benchmark: 1D State Mujoco

● Don’t need to drop 2D image backgrounds in DM-Control



Explosion of Observational Overfitting Benchmarks 

[Gamrian’18]

[Zhang’18]

[Stone’21]

[Sonar’20]

[Zhang’21]

Paper Bibliography in Appendix.



What about other types of overfitting? 



Why do Gridworlds/Non-Vision overfit?

● Maybe something temporal?
○ Agent is “expecting” something to occur in time?

C. Zhang, O. Vinyals, R. Munos, S. Bengio. A Study on Overfitting in Deep Reinforcement Learning (2018).
R. Tachet des Combes, P. Bachman, H. Seijen. Learning Invariances for Policy Generalization (ICLR Workshop, 2018)



Opinion: We don’t know (no clear conceptual framework)

● Observational Overfitting isn’t specific to RL
● (Opinionated) Metrics of understanding

○ Edit specific parts of MDP to increase/decrease gen. gap 
○ Clear ways to make benchmarks (empirical + theoretical)

K. Xiao, L. Engstrom, A. Ilyas. Noise or Signal: The Role of Image Backgrounds in Object Recognition (2020).
M. Arjovsky, L. Bottou, I. Gulrajani, D. Lopez-Paz. Invariant Risk Minimization (2020)



Example: What is “Recurrent Overfitting”?

Is it a maze? Is it MAML? Is it an RNN?



What Affects Generalization?



Explicit Regularization

● Invariant Representations
○ Invariant Representations for Reinforcement Learning without Reconstruction (2021)
○ Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning (2021)

● Domain Randomization + Data Augmentation
○ Reinforcement Learning with Augmented Data (2020)
○ Automatic Data Augmentation for Generalization in Deep Reinforcement Learning (2020)

● Losses (L2 reg., dropout, etc.)
○ Quantifying Generalization in Reinforcement Learning (2019)
○ Generalization and Regularization in DQN (2018)

Paper Bibliography in Appendix.

https://openreview.net/forum?id=-2FCwDKRREu
https://arxiv.org/abs/2101.05265
https://arxiv.org/abs/2004.14990
https://arxiv.org/pdf/2006.12862.pdf
https://arxiv.org/abs/1812.02341
https://arxiv.org/abs/1810.00123


Implicit Regularization - “Accidental” Factors

● Hyperparameters
○ Entropy matters alot
○ Gamma matters in other works

● Architectures
○ IMPALA-Large > IMPALA > NatureCNN

K. Cobbe et al. Quantifying Generalization in Reinforcement Learning (ICML, 2019)



Implicit Regularization - Architectures

Why is:

>
?IMPALA-CNN

NatureCNN

L. Espeholt et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures (2018)
V. Minh et al. Playing Atari with Deep Reinforcement Learning (2013)



Implicit Regularization - Architecture

● Residual Layers, Overparameterization, Nonlinearities

He was right all along.

1D State Mujoco Task



Implicit Regularization - Architecture

Ranking also occurs if I make a 2D State Mujoco Task.



Implicit Regularization - Architecture Memorization

Which memorizes the most?

● NatureCNN (600K Params)
● IMPALA (622K Params)
● IMPALA-LARGE (823K Params)

More parameters = More memorization?

Wrong!



Implicit Regularization - How Strong is it?

IMPALA-LARGE memorizes the 
least.

Implicit Regularization is VERY 
strong.

2D State Swimmer

2d State LQR

Memorization Capacities:

NatureCNN: 30-50
IMPALA: 2-5
IMPALA-LARGE: <2



How to Predict Generalization?



How do you know beforehand that you’ve overfitted?



Human-in-the-loop methods

Hilton’20 Hilton’20

Tang’20 Greydanus’17Song’20

Saliency

Interpretable Features

Paper Bibliography in Appendix.



Systematic ways

Inspiration: Use knowledge from supervised learning.

Generalization Bounds:

Rademacher/Lipschitz/Network Weights:

Margin Distributions:



Systematic ways?

Generalization Methods have great success in SL:

Generalization Gap Bounds

Margin Distributions

What about RL?

B. Neyshabur et al. Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks (ICLR, 2019)
P. Bartlett et al. Spectrally-normalized margin bounds for neural networks (NeurIPS, 2017)



Systematic ways...?

Simple Case: 1D Projected LQR

As a function of overparameterization:

● Generalization Gap Decreases
● E2E Policy Norm Decreases
● Successful SL Bounds...Increase??



What about real RL?

● Overparameterization helps in CoinRun.



Margin Distributions don’t say anything

● Use (state, action) from replay buffer as (x,y)
● Expect: Increasing parameterization, distribution shifts right
● Actual: Increasing parameterization, distribution shifts left 
● Denominator (weight norms) too strong :(



Key Questions

● What causes overfitting in RL, besides observational overfitting?
○ What is a good framework to study this?

● How do you explain effects of implicit regularization?
○ Neural Tangent Kernels in RL?

● How do you predict generalization without explicitly testing on eval env?
○ Practical Generalization Theories in RL?



Thank you!
Feel free to reach out!
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