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Locomotion

Locomotion is one of the most fundamental skills of all land animals:

Cheetahs Elephants Humans



So far, Robot Locomotion research has displayed an impressive set of results to 
reproduce this natural skill.

Boston Dynamics Spot MIT Cheetah

Robot Locomotion



But unfortunately, robots can be fragile to slight changes in dynamics. 

DARPA Robotics Challenge, 2015 Asimo Robot, 2006

Slight Changes in Dynamics



Domain Randomization 
(Tobin et al, 2017)

● Only trains in 
simulation

● Assumes all tasks 
possess same optimal 
policy.

Model Based Adaptation
(Nagabandi et al, 2019)

● Dynamics models can 
have compounding error 
problems.

● Acquiring an accurate 
model can be difficult.

Meta Strategy Optimization 
(Yu et al, 2020)

● Latent context vectors 
appended to the state

● Context may not 
contain necessary 
information

Prior Works: Robustness to Real World Changes



● Model-Free: Only needs to train a feed-forward policy mapping state -> 
action.

● Instead of training only in simulation (Domain Randomization), use s a small 
amount of real-world data at test time, since it is the ground truth.

Minitaur Robot adapts to mass imbalances and voltage changes.

Our Strategy: Real World Data for Fast Adaptation



1. Sample Efficiency for Adaptation: Real world data is expensive. We should 
only use a handful of episodes.

2. How does a pre-trained policy in simulation use real world data to adapt?

This leads us to Model Agnostic Meta-Learning or MAML (Finn et al, 2017).

Challenges



Meta-Learning for Robotics in a Nutshell:

● Train meta-policy that can be easily turned into an adapted policy for a particular 
task from a large set of tasks in few amounts of data

● Training meta-policy in a standard meta-learning framework can be expressed as:

● Standard MAML uses gradient-based operator for both adaptation and meta-policy 
optimization.
 

one-shot gradient-based 
adaptation operator

bilevel 
optimization 
formulation

   distribution over   
-  trajectories given a task  
   and conditioned on a policy



Gradient-based Meta Learning:

● Compute gradient of J as follows [the so-called PG-MAML algorithm]:

● Challenge: Unbiased estimation of the above gradient is non-trivial. 
● Model Limitations: The above computational framework excludes

                                 non-differentiable operators U

 
 

standard MAML



PG-MAML Results
Originally, MAML in Reinforcement Learning used standard Mujoco benchmarks, 
and modified them via their reward functions to shape behaviors, such as 
Forwards + Backwards HalfCheetah:

https://github.com/tristandeleu/pytorch-maml-rl

https://github.com/tristandeleu/pytorch-maml-rl


PG-MAML for Legged Robots - Challenges
● PG-MAML performs task exploration via sampling actions from the policy’s 

output distribution, but jerky random actions are bad for real robots.

● Noisy environment gives inaccurate return measurement. If        is (expected) 
cumulative reward, we get noisy observations:



Evolutionary Meta Learning (ES-MAML)
Evolutionary Strategies (ES): 

1. Treat total reward as blackbox function 
2. Estimate gradients via local perturbations

● Work particularly well for 
continuous control tasks.

● Allow deterministic policies, 
which do not exacerbate the 
noise problem.

● Provide parameter-based rather 
than action-based exploration 
(as PG algorithms).

Features of ES algorithms:

can be interpreted as gradients of Gaussian smoothings 
and approximated via Monte Carlo methods



Evolutionary Meta Learning (ES-MAML)
ES-MAML: Estimate the meta gradient using ES. (Song et al, 2019)

● Can use non-differentiable adaptation operator U.
● Example: Hill-climbing, which enforces monotonic improvement (in 

Deterministic Environments).



ES-MAML: Continuous Control Benefits
  



ES-MAML: Exploration Benefits - 4 Corners
● Exploration via parameter space solves hard tasks for PG-MAML.
● Hill-Climbing is strongest adaptation operator.



What about the real world?



Adaptation in the noisy real world
When there is noise:

Which hill-climbing operator should we use?



Sequential Hill-Climbing
Sequential (Original):

● Monotonic increase only in the deterministic case.
● Susceptible to noise in the real world.



Average Hill-Climbing
Average evaluation over P trials - Approximate 
the expected objective:

● Low sample efficiency - multiple rollouts 
committed to single parameter

● Fails when noise is:
○ Not IID. Example: Robot motor 

overheats throughout testing.
○ Not zero mean. Example: Robot can 

fall during testing. 



Batch Hill-Climbing

Batch evaluation over P perturbed trials 
- Take the best trial, even if noisy:

● Sample efficient - P diverse 
parameter samples.

● Works even in the case of 
adversarial noise - does not require 
strict noise assumptions!



The Mathematics of Batch Hill-Climbing

upper-bound on the 
norm on the L2-norm 
of f-gradient

any constant 
satisfying:

upper bound on the 
measurement error 
of small-error 
measurements

any constant 
satisfying:

diameter of
f-domain

number of 
iterations
of the 
algorithm

Batch Hill-Climbing:

● producing strong 
convergence
(see: right) with
high probability
even if substantial
number of 
measurements
is arbitrarily 
corrupted

standard averaging-
operator
is not resistant to
arbitrary noise



Experimental Framework



Reinforcement Learning Framework
In the standard RL framework, the Minitaur task is a Markov Decision Process 
(MDP), consisting of: 

● Observation: Roll + Pitch Angle, 8 Motor Angles, and sin/cos phase variable
● Action: Swing and Extension of each leg
● Reward: Encourages gradually increasing velocity, reduce energy (torque * 

angular velocity) 



Simulation Experiment Setup
We train the meta policy in simulation using Pybullet.

Each task samples a different combination of physics 
parameters:

● Body and Leg Mass
● Battery Voltage, Foot Friction
● Motor Damping, Motor Strength, Control Latency



Simulation Results: Qualitative Changes
Correction from falling:

Correction of walking direction:



Real-Robot Experiments



Task Setup

● Mass Voltage: 500g mass on side, voltage reduced to disrupt leg 
synchronization

● Friction: Tennis Balls on feet, to reduce gait via slipping.





Mass-Voltage Task

● ES-MAML outperforms PG-MAML and Domain Randomization (DR)
● ES-MAML stabilizes the roll angle to 0 after adaptation.





Friction Task

● ES-MAML outperforms PG-MAML and Domain Randomization (DR)
● Despite the noisy environment, ES-MAML consistently produces longer and more 

stable trajectories.



Ablation Studies in Simulation



Simulation Results: Distribution Across Tasks
Is adaptation even needed for this benchmark? 

Yes! Scatterplot shows multiple tasks where ES-MAML adaptation increases 
reward drastically



Simulation Results: ES-MAML vs PG-MAML

● ES-MAML consistently outperforms PG-MAML and Domain Randomization (DR) 
● Hill-Climbing enforces Adapted > Meta, while PG-MAML has no guarantees.



Simulation Results: Average vs Batch
● Given same number of parameter changes (Q) and parallel (P) rollouts:

○ (Left): On Noisy Minitaur, Batch produces higher adaptation gap.
○ (Right): On Noisy Nav-2D (toy env. from (Finn et al, 2017)), Batch Produces 

higher raw adaptation performance.  

Noisy Minitaur Environment Noisy Nav-2D Environment



Conclusion
● We have demonstrated a successful application of MAML on a real robot.
● ES-MAML + Batch Hill-Climbing (our method) enables fast adaptation on 

robots.
○ Less sensitive to noisy robot experiments
○ Allows all the benefits of ES for robotics: 

■ Deterministic, stable policies
■ Exploration via parameter space



Future Work
● Continuous Adaptation:

○ How can the robot adapt to constantly changing environments?
● Improving Sample Efficiency:

○ Can we use less data for adaptation by using model-based techniques?
○ Are there better adaptation operators for the model-free case?



More Details
Please see our following links for more information:

● arXiv: https://arxiv.org/abs/2003.01239
● Google AI Blog: 

https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html
● Video: https://youtu.be/_QPMCDdFC3E
● Code: https://github.com/google-research/google-research/tree/master/es_maml

https://arxiv.org/abs/2003.01239
https://ai.googleblog.com/2020/04/exploring-evolutionary-meta-learning-in.html
https://youtu.be/_QPMCDdFC3E
https://github.com/google-research/google-research/tree/master/es_maml


Thank you!



UNUSED SLIDES



Meta Learning - Learning the Learning Process
Meta-Learning, or “Learning to Learn” has appeared in a variety of works:

Learning to Learn by Gradient 
Descent by Gradient Descent 
(Andrychowicz et al, 2016)

RL^2 (Duan et al, 2017)



MAML: Model Agnostic Meta Learning (Finn. et al 2017)


