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OBSERVATIONAL OVERFITTING
In visually rich environments, the agent can overfit to anything correlated with progress. In Sonic the
HedgeHog [1], saliency (red) shows agent has overfitted to the clock and background objects because
they move backward while the agent moves forward.

We simplify this setting by only considering an underlying MDP, but generate multiple levels by vary-
ing the "observation" function wθ(s). Observation function projects underlying MDP’s state s → wθ(s)
where wθ(s) = h(f(s), gθ(s)). f(s) outputs generalizable features, gθ(s) outputs non-generalizable fea-
tures, h(·) is a concatenation function.
Examples: 1. f(s) is Sonic, gθ(s) is the background, h(·) is image rendering. 2. f(s) =Wfs, gθ(s) =Wθs,
h is 1D concatentation. 3. f(s), gθ(s) both deconvolutions but gθ uses varying weights; h(·) is half-half
image concatenation.

This setup causes 1D case to overfit, and is not
limited to 2D image background (e.g. chang-
ing shapes and colors). This suggests something
more principled is happening, unrelated to “real
world images“. Using our setup, we can trans-

form any objective C(P ) → C
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. If P? is

the unique minimizer of the original cost function
C(P ), there can exist multiple solutions for high

dimensional case, e.g.
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]T
∀α. This

extra bottom component WθP
T
? causes overfitting.

THEORY

Simple case: one-step LQR convex objective C(K;Wθ) = 1
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=⇒ ∇2C(K;Wθ) =
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. Hessian ∇2C(K;Wθ) is degenerate due

to extra observation dimension, which means non-degenerate part of initialized policy (e.g. if using
Gaussian initialization) cannot reach to generalized minimizer using only gradient descent. The gener-
alization gap must exist in this setting, establishing a lower bound.

IMPLICIT (ARCHITECTURAL) REGULARIZATION
Implicit Regularization [2] is an important part of improving generalization for both MLP’s and Convo-
lutions. These include: increasing depth, increasing width, and residual layers.

(Left) Using example (3), the same ranking in generalization from [3] (NatureCNN, IMPALA, IMPALA-
LARGE) exists. (Right) If observation only comes from “background“ gθ(s), memorization ranking is
the reverse of the generalization ranking→ evidence of implicit regularization.

Similar case when using MLP’s on CoinRun when increasing depth and width.

METRICS TO STUDY
Key observations: (1) If using nonconvex LQR with an observational setup, increasing observation di-
mension increases gap. (2) SL techniques are poor ways to predict RL generalization gaps. If policy
K = K0K1, ...,Kj is overparametrized (more layers, more width), well-known SL bounds are poor pre-
dictors of generalization gap. (3) Similarly, SL margin distributions are poor ways if checking policy’s
discrete action margins; the norm of weights dominates everything.
Conclusion: our theoretical understanding of deep RL generalization is poor.
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