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Previous Works on RL Generalization

e Numerous Works investigating changing MDP backgrounds
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Previous Works on RL Generalization

e Other works showing that RL agents overfit, but not entirely from changing
backgrounds:
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What does it mean to overfit in RL?

e Zero-Shot Generalization: Agent allowed finite training set of MDPs,
evaluated on unseen test set of MDPs.

e Ideally, all MDP's sampled from a distribution, similar to Supervised
Learning.

e Overfitting: Reward Gap between training and testing.



Current Work

e Sonic the HedgeHog (Gym Retro, [Nichol18]): Saliency (Red) suggests
overfitting to background
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Current Work

e Agent can train even if it only saw the timer!
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General Framework: “Observational

Overfitting”
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e For afixed MDP M, can generate
multiple MDP’s Mg by sampling
“observation functions” ¢g : S — O

e Important invariant features projected
from the same function f

e But background projection function gg
changes per seed

Important Features




Base Case: LQR

e Inthe linear case, let f(s) = Wysand g(s) = Wys
e Aunderlying cost C(P) can be transformed into observation space cost

e (w1

e If P,isunique minimizer of C(P), then multiple solutions [<1_a)wgpj
induced for C(K; Wy); the only solution that generalizesis a =1
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Theoretical Case: 1-Step LQR

e For a 1-Step LQR (convex) case, let

2
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e Correct population minimizer lives in degenerate Hessian's span.
e Non-degenerate components of initialization do not change, hence overfitting
must occur.



Experimental Case: Nonconvex LQR
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Experimental Case: Nonconvex LQR

Varying Layers 2-Layer, Varying Width
e Adding more linear layers reduces

generalization gap in LQR.

e Many SL generalization bounds rely on
using Lipschitz bounds, which LQR also
satisfies.

e So can we upper bound the LQR
generalization gap with SL bounds? Nope!

e Ourtheoretical understanding of RL
generalization is limited.
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Nonlinear 1D Case
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Nonlinear 1D Case

Does overparameterization
help?

Yes! (But the effect can be
dependent on choice of
non-linearity.)

Residual ReLU layers also
improve generalization as
well (HalfCheetah).
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Nonlinear 2D (Image) Case

e What about 2-D case? We use linear
deconvolutional layers to project a 1-D
state to 2-D (84x84) classic DQN
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Nonlinear 2D (Image) Case

e Result: We get the same ranking under our projection case.
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Implicit Regularization in Reinforcement

Learning

e How are all the above results related? Implicit Regularization.
e “Implicit Regularization” [Neyshabur17]: any form of regularization not
expressed in the end-to-end loss.

e Forms of implicit regularization in our work:
o Overparameterization in neural network policies.
o  Special network modifications (Choice of non-linearity, Use of residual layers)

e Other forms from SL literature:
o Choice of optimizer/Batch-Size.



RL Memorization Test

e |If we trained NatureCNN (600K params), IMPALA (622K params), and
IMPALA-LARGE (823K params) on “the background” gg, which policies

memorize the most?
e The largest model (i.e. IMPALA-LARGE) should memorize more, right?



RL Memorization Test

e Nope. IMPALA-LARGE memorizes the least!
e Evidence of Implicit Regularization in RL.

Training, Test Rewards (f = NULL)
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Implicit Regularization in CoinRun

e Does increasing depth/width for MLPs help CoinRun? Yes.
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Implicit Regularization in CoinRun

e But are we able to predict generalization gaps at all using classic margin
distributions from SL [Bartlett17]?

e Treat on-policy buffer (state, action) pairs as (image, label) pairs in SL.
e Nope. Norm based bounds are too strong.
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Conclusions

e Our theoretical understanding of Deep RL generalization is limited.

e SL generalization bounds do not empirically hold at all for RL.

e Overparameterization and Implicit Regularization should be studied more in
RL.



Thank you!
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