

OmniPred

Regression with Language Models (?!)

Xingyou Song, Oscar Li, Chansoo Lee, Bangding Yang, Daiyi Peng, Sagi Perel, Yutian Chen Google DeepMind, CMU, Google

Credits

OmniPred Project

Oscar Li

Richard Song

Chansoo Lee

Jeffrey Yang

Daiyi Peng

Yutian Chen

Sagi Perel

Extended Collaborators + Support (Former + Current)

Richard Zhang

David Dohan

Zi Wang

Kazuya Kawakami

Greg Kochanski

Arnaud Doucet

Marc'aurelio Ranzato

Lior Belenki

Nando de Freitas

Chengrun Yang

JD Co-Reyes

Aviral Kumar

Yingjie Miao

Timothy Chu

Daniel Golovin

Current State of ML

(AutoML Research Perspective)

RL Fine-Tuning

Step 1 Step 2 Step 3 Collect demonstration data Collect comparison data and Optimize a policy against the and train a supervised policy. train a reward model. reward model using the PPO reinforcement learning algorithm. A prompt is A prompt and () 0 A new prompt is sampled from our several model sampled from Explain reinforcement Explain reinforcement Write a story prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. the dataset. about otters. sampled. In reinforcement learning, the agent is... The PPO model is A labeler initialized from the 0 0 demonstrates the In machine supervised policy. desired output We give treats and behavior. punishments to teach... The policy generates A labeler ranks the Once upon a time... an output. outputs from best to worst. D > G > A > B This data is used to The reward model fine-tune GPT-3.5 calculates a reward with supervised for the output. learning. This data is used to train our The reward is used reward model. to update the D > G > A > B policy using PPO.

RL-HF: RL from *Human Feedback*

Humans dictate subjective ratings:

- Creativity + personality
- Safety
- (Human-verifiable) Factuality

Great for Human Interaction:

- Writing prose (poetry, essays)
- Conversations
- Likeability / Human Values

$$y \in \{0, 1\} \text{ or } [0, 1]$$

Poor For:

- Experiment Prediction
- Business Metrics
- Forecasting

Reward Models from the AutoML Lens

Reward Models are more broadly, LM regressors over blackbox objectives:

 $f:\mathcal{X} o\mathbb{R}$

Current focus on **human feedback**, but should be extended to **any blackbox function**.

Examples:

- Outcomes of expensive experiments
- Synthetic / Mathematical Expressions
- Metrics over production systems
- Environmental feedback

Different Names for Different Communities

LLM Lingo

- Reward Model
- AutoRater

AutoML Lingo

- Regression
- Performance Prediction
- Surrogate

Regression with Language Models

Description

Regression in experimental design.

x = Parameters to Blackbox Function

- Float (ex: Learning Rate)
- Category (ex: SGD or Adam)
- Integer (ex: Number of Layers)

y = Scalar Metric (ex: Accuracy)

$$y = f(x)$$

Prompt (X):

I'm training a ResNet-52 on CIFAR-10 with hyperparameters batch size=256 and learning_rate=0.01 with SGD, over 100 epochs. Predict accuracy?

Target (Y):

0.912

Benefits

LLM Community

- Reward Models Simulating Systems / Nature
- More precise reward modeling

Stock Market

World News

AutoML Community

- Flexible text-based regression
- Multi-task + meta-learning
- Realistic surrogate-based benchmarks

```
"name": "gan1d 500 iters -
"2022-05-18"
"parameter": {
   "name": "learning_rate",
```

Hyperparameters

Architecture

Code

Ex: Could we speedup program search?

FunSearch: Making new discoveries in mathematical sciences using Large Language Models

> 14 DECEMBER 2023 Alhussein Fawzi and Bernardino Romera Paredes

> > < Share

AutoML-Zero (Real, 2020)

OmniPred Details

Serialization

Standard "Prefix LM" Training: (Prompt, Response)

- X: Function input
- M: Metadata describing function
- Y: Objective value

	Language Model Textual Representation		
x	batch_size:128,kernel:'rbf',learning_rate:0.5,model:'svm',optimizer:'sgd'		
\overline{m}	title:'classification',user:'some-person',description:'spam detection', objective:'accuracy'		
y	<+><1><2><3> <e-2></e-2>		

Serialization (X)

- Natural Language / JSON
- Variable length / Parameter count
- Raw value, no normalization!

()	Language Model Textual Representation
x	batch_size:128,kernel:'rbf',learning_rate:0.5,model:'svm',optimizer:'sgd'
m	title: 'classification', user.' some person', description: spam detection',
	objective:'accuracy'
\overline{y}	<+><1><2><3> <e-2></e-2>

Serialization (M)

- Natural Language
 - Shove in anything
- Conditions distribution
 - Important: Username, title, objective

	Language Model Textual Representation		
\boldsymbol{x}	batch_size:128, kernel:'rbf'.learning rate:0.5, model:'svm', optimizer:'sgd'		
\overline{m}	title:'classification',user:'some-person',description:'spam detection', objective:'accuracy'		
\overline{y}	<+><1><2><3> <e-z></e-z>		

Serialization (Y)

- Fixed-length custom tokens
 - o (sign, mantissa, exponent)
- Restricted decoding (logit masking)
 - Always output correct tokens
- Raw value, no normalization!

	Language Model Textual Representation		
\overline{x}	batch_size:128, kernel:'rbf', learning_rate:0.5, model:'svm', optimizer:'sgd'		
\overline{m}	title: 'classification', user: 'some-person', description: 'spam detection',		
	objective: 'accuracy'		
\overline{y}	<+><1><2><3> <e-2></e-2>		

Regression Paradigm Change

Dynamic Input Spaces: (X) serialization ignores search space bounds

Multitask: Just look at (M)

No Tensorization: Avoid fixed-length embeddings

No Rescaling/Normalization: Avoid numerical instability issues

Regressor	Dynamic Input Spaces?	Can Multitask?	Tensorize?	Rescale?
MLP	No	Only fixed spaces	Yes	Yes
Tree-based	No	Only fixed spaces	Yes	Optional
Gaussian Process (GP)	No	Only fixed spaces	Yes	Yes
GNN / Transformer / RNN	No	Only fixed domains	Yes	Yes
OMNIPRED (Ours)	Yes	Yes	No	No

What about new data?

Required for regressor-guided search, new problems, etc.

Finetune from pretrained model on new data

(Optional) LoRA for efficiency

$$\theta_{ft} = \theta_{pt} - \nabla \ell_{(x,y)} \sim \mathcal{D}_{train}(\theta)$$

Custom LM

Basic 12-layer T5X Encoder-Decoder (200M Params)

- No English pretraining.
- ~8 GPU for Training, 1 GPU inference

Training Data + Evaluation

Using Google Vizier Data

Convenient source of regression data from:

- AutoML (Hyperparameter tuning)
- Chemistry / Biological
- Production (Ads Bidding)

Property	Statistic
# Studies	O(70M+)
# Trials	O(120B+)
# Distinct Users	O(14K)

Vizier Trials

- Flat Types: DOUBLE, INTEGER, DISCRETE, CATEGORICAL
- Conditional Parameters (non-fixed parameter count for an X)

Vizier Metadata

Metadata: Title, Owner, Description, Objective Name, Free-form text

Transferability sources:

- Single user, similar experiments
- Different user, similar experiments
 - Ex: ResNets on CIFAR10
- Similar params, different experiments
 - Ex: "learning_rate"
- Description / Free-Form Metadata
 - Ex: Associated code / file locations

Domain	X	M
Google AutoML	batch_size: 128 model_type: REDACTED activation_fn: "tanh" batch_norm: "True" dropout: 0.143 embedding_combiner: "mean" gradient_clip_norm: 1.63e+03 num_hidden_layers: 1 hidden_units[0]: 359 optimizer_type: "AdamOptimizer" beta1: 0.9 beta2: 0.999 learning_rate: 0.926 nlp_vocabulary_strategy: "adjusted_mutual_info" vocabulary_strategy: "adjusted_mutual_info"	title: "n-w597ng99i71j0-q40zcboi1ea71" user: REDACTED description: "" objective: "val_categorical_cross_entropy amc_model_version: REDACTED task_type: "multi_class_classification"

Domain	X	M
Init2Winit	dropout_rate: 0.6	title: "d_sp1-lm1b_trfmr-b1024-2021aug20"
	decay_factor: 0.0379	user: REDACTED
	label_smoothing: 0.378	description: ""
	<pre>lr_hparams.base_lr: 0.00285</pre>	objective: "valid/ce_loss"
	<pre>lr_hparams.decay_steps_factor: 0.854</pre>	
	lr_hparams.power: 1.94	
	opt_hparams.one_minus_momentum: 0.0557	

Domain	X	M
Protein Design	p00000000:"9" p00000001:"16" p00000002:"1" p00000003:"11" p00000004:"16" p00000006:"9" p00000006:"0" p00000007:"14"	title: "871cac30956711eab5bef371aa1bb25a" user: REDACTED description:"" objective:""
	p00000047:"13"	

Domain	X	M
Vertex AI Text	<pre>"single_dense_feature" token_model_type: "cnn" token_bow_combiner: "sqrtn" token_model_type: "bow" rand:0 batch_size: 4 convnet: "2:3:4*100pa" dropout_keep_prob: 1 hidden_layer_dims: 50 max_length: 1.54e+03 max_num_classes_for_per_class_metric: 0 max_token_vocab_size: 1e+05 merge_word_embeddings_vocab_size: 1e+05 token_freq_cutoff: 1 tokenizer_spec: "delimiter" word_embedding_dim: 100</pre>	title: "20220228-621c9aea-0000-2c94" user: REDACTED description: REDACTED objective: "micro-auc-pr-label0_label" atc_study_dataset_tag: "" atc_study_notes: ""

Additional Synthetic BBOB Data

Controlled experiments: 24 BBOB functions w/ multi-task augmentation

- Use random shifts f(x shift)
- Metadata (M) shows (function name, dimension, shift)
 - © Ex: "(Sphere, dimension=3, shift=[0.1,-0.3, -2.1])"

Single-Task Baselines

- Gaussian Process (Vizier Default)
- Random Forest + Trees (XGBoost)
- MLP (2-Layer ReLU, MSE Loss)

$$x \in \mathbb{R}^d$$

Caveat: Not trying to start a regression fight

Evaluation Protocol

Normalized Mean Average Error per Study

- Different y-scales (CIFAR10 is [0, 1], BBOB is [10^2, 10^9])
- LM pointwise prediction is median of 64 samples.

$$\frac{1}{y_{\text{max}} - y_{\text{min}}} \frac{1}{|\mathcal{D}^{\text{test}}|} \sum_{(x,y) \in \mathcal{D}^{\text{test}}} |f(x) - y|$$

Experiments

Key Questions:

- Can LM simultaneously regress on multiple-tasks?
 - Over different spaces and numeric scales?
- How is multi-task training useful?
 - \circ Why would we train on f'(x) if we're eval-ing on f(x) only?
- Can fine-tuning deal with unseen tasks?
 - Does pretrained knowledge carry over?

Simultaneous Regression (BBOB)

Is LM capable of high-precision, simultaneous regression?

Uncertainty Estimation

Randomly flip y-sign. What happens?

Capture uncertainty + bimodality

No explicit ensemble count

Simultaneous Regression (Real World)

What about real-world objectives?

Multi-task Training (AutoML Data)

(1 Lower is better)

If I only eval on f(x)...

Does training on f'(x) help?

Multi-task Training (BBOB)

BBOB seen as f(x,m).

What if we vary m (the shift)?

(| Lower is better)

Evaluation Across Domains

Single-task not bad

Beats MLP on conditionals!

Multi-task beats Single-task

Beats baselines most times

Name	# Studies	Avg. TpS	Avg. SS
BBOB	1M	30	4.0
Bid Simulation	22K	698	4.6
Google AutoML (Internal)	540K	250	(3.3, 29.9)
Init2winit	2K	176	3.6
Protein Design	54K	584	125.6
Vertex AI AutoML (Tabular)	1.4M	88	(4.6, 42.4)
Vertex AI AutoML (Text)	544K	118	56.0

Multi-task LM vs Single-task Baselines

(1 Lower is better)

Does text help?

"Anonymize" prompts via study-dependent hashing:

- Parameter names "batch size" -> "s710kdf9"
- Categorical values "adam" -> "129sd923"
- Metadata "shift: [-0.1, 0.2]" -> "dsnf9133"

De-correlates f(x) from f'(x).

Model still trains, but eval much worse.

	Mean Study Error (↓)		
Datasets (# Training Studies)	Original	Anonymized	
BBOB (50K)	0.03	0.46	
BBOB (Full 1M)	0.01	FAIL	
AutoML (26.3K)	0.19	0.44	
AutoML (Full 540K)	0.15	0.43	

Local Finetuning Experiments

<u>Classic GPT-Trick:</u> Pretrain then Finetune

Eval on unseen Vizier studies

- Studies after March 31, 2023
- From distinct users

$$\theta_{ft} = \theta_{pt} - \nabla \ell_{(x,y) \sim \mathcal{D}_{train}}(\theta)$$

(1 Lower is better)

Local Finetuning Experiments

Positive Transfer

 Pretrained knowledge carries over to new studies

Negative Transfer...?

 Sometimes pretrained knowledge is worse...?

$$\theta_{ft} = \theta_{pt} - \nabla \ell_{(x,y) \sim \mathcal{D}_{train}}(\theta)$$

(| Lower is better)

Positive or Negative Fine-tuning Transfer?

Suppose we always eval on AutoML data.

Possible pretrained checkpoints

- None (Single-task)
- BBOB
- AutoML itself
- Entire Vizier

$$\theta_{ft} = \theta_{pt} - \nabla \ell_{(x,y) \sim \mathcal{D}_{train}}(\theta)$$

	Mean Study Error (↓) on AutoML		
Pretraining Dataset	Before Finetuning	After Finetuning	
None (Single-Task)	0.98	0.20	
BBOB	0.98	0.45	
AutoML	0.15	0.15	
Entire Vizier	0.31	0.15	

(Optional) Ablations

Best y-tokenization?

- (Default) Separate Sign and Digit-by-Digit: <+><1><2><3><4><E-2>
- Merged Mantissa: <+1234><E-2>
- Exponent Before Mantissa: <+><E-2><1><2><3><4>

	AutoML		BBOB	
Tokenization Method	Single-Task	Multi-Task	Single-Task	Multi-Task
Default	0.21	0.15	0.17	0.01
Merged Mantissa	0.73	0.15	0.41	0.01
Exponent Before Mantissa	0.24	0.15	0.17	0.01

Table 6: Mean Study Error (↓) comparisons between different tokenization methods.

Importance of sampling aggregation?

	Mean Study Error (↓)		
Empirical Aggregation Method	AutoML (Full 540K)	BBOB (Full 1M)	
Median (default)	0.15	0.01	
Max-likelihood	0.22	0.01	
Mean	0.23	0.01	

When does Multi-task training help?

Intuitively when eval task has low training data.

Conclusions and Future Work

Gradients vs In-Context

ICL not only way to absorb (x,y).

Gradients:

- Unbounded limit for absorbing (x,y) pairs
- Easy JSON formatting, no (X) compression

Analogous to MLP vs GP

VS

Many improvements

- Weighted cross-entropy loss
 - Sign + exponent most important
- Better x-tokenizations
 - SentencePiece: '1234.5' -> ['12', '3', '4.5']
- Better warm-start
 - English pretraining
 - Pretraining to decode X's

New Applications

(X,M) can be anything:

- Configuration Files
- Graphs
- Combinatorics
- Language
- Code

New Benchmarks

Reward Models simulate human ratings

LM Surrogates simulate realistic objectives

HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML

Sebastian Pineda Arango* University of Freiburg

pineda@cs.uni-freiburg.de ${f Martin~Wistuba}^{\dagger}$

Amazon Research

marwistu@amazon.com

Hadi S. Jomaa*

University of Hildesheim hsjomaa@ismll.uni-hildesheim.de

Josif Grabocka
University of Freiburg
grabocka@cs.uni-freiburg.de

Published as a conference paper at ICLR 2022

SURROGATE NAS BENCHMARKS: GOING BEYOND THE LIMITED SEARCH SPACES OF TABULAR NAS BENCHMARKS

Arber Zela 1 , Julien Siems 1 , Lukas Zimmer 1 , Jovita Lukasik 2 , Margret Keuper 2 , Frank Hutter 1,3

¹ University of Freiburg, ² University of Mannheim, ³ Bosch Center for AI

More Links

- Paper
- Code
- Poster

Thank you!