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Current State of ML
(AutoML Research Perspective)



RL Fine-Tuning



RL-HF: RL from Human Feedback

Humans dictate subjective ratings:

● Creativity + personality
● Safety
● (Human-verifiable) Factuality

Great for Human Interaction:

● Writing prose (poetry, essays)
● Conversations
● Likeability / Human Values

Poor For:

● Experiment Prediction
● Business Metrics
● Forecasting



Reward Models from the AutoML Lens

Reward Models are more broadly, LM regressors over blackbox 
objectives:

Current focus on human feedback, but should be extended to 
any blackbox function.

Examples:

● Outcomes of expensive experiments
● Synthetic / Mathematical Expressions
● Metrics over production systems
● Environmental feedback

?



Different Names for Different Communities

LLM Lingo

● Reward Model
● AutoRater

AutoML Lingo

● Regression
● Performance Prediction
● Surrogate



Regression with Language Models

Prompt (X):
I’m training a ResNet-52 on CIFAR-10 with hyperparameters batch size=256 
and learning_rate=0.01 with SGD, over 100 epochs. Predict accuracy?

Target (Y):
0.912

Description

Regression in experimental design.

x = Parameters to Blackbox Function

● Float (ex: Learning Rate)
● Category (ex: SGD or Adam)
● Integer (ex: Number of Layers) 

y = Scalar Metric (ex: Accuracy)



Benefits

LLM Community

● Reward Models Simulating Systems / 
Nature

● More precise reward modeling

AutoML Community

● Flexible text-based regression 
● Multi-task + meta-learning
● Realistic surrogate-based benchmarks

Architecture
Code

Hyperparameters

Stock Market World News



Ex: Could we speedup program search?

AutoML-Zero (Real, 2020)



OmniPred Details



Standard “Prefix LM” Training: (Prompt, Response)

● X: Function input
● M: Metadata describing function
● Y: Objective value

Serialization



● Natural Language / JSON
● Variable length / Parameter count
● Raw value, no normalization!

Serialization (X)



● Natural Language
○ Shove in anything

● Conditions distribution
○ Important: Username, title, objective 

Serialization (M)



● Fixed-length custom tokens 
○ (sign, mantissa, exponent)

● Restricted decoding (logit masking) 
○ Always output correct tokens

● Raw value, no normalization!

Serialization (Y)



Regression Paradigm Change

Dynamic Input Spaces: (X) serialization ignores search space bounds 

Multitask: Just look at (M)

No Tensorization: Avoid fixed-length embeddings

No Rescaling/Normalization: Avoid numerical instability issues



What about new data?

Required for regressor-guided search, new problems, etc.

Finetune from pretrained model on new data

● (Optional) LoRA for efficiency



Custom LM

Basic 12-layer T5X Encoder-Decoder (200M Params)

● No English pretraining.
● ~8 GPU for Training, 1 GPU inference



Training Data + Evaluation



Using Google Vizier Data

Convenient source of regression data from:

● AutoML (Hyperparameter tuning) 
● Chemistry / Biological
● Production (Ads Bidding)



Vizier Trials

● Flat Types: DOUBLE, INTEGER, DISCRETE, CATEGORICAL
● Conditional Parameters (non-fixed parameter count for an X)



Vizier Metadata

Metadata: Title, Owner, Description, Objective Name, Free-form text

Transferability sources:

● Single user, similar experiments
● Different user, similar experiments

○ Ex: ResNets on CIFAR10
● Similar params, different experiments

○ Ex: “learning_rate”
● Description / Free-Form Metadata

○ Ex: Associated code / file locations



Actual Serialization Examples

Domain X M



Actual Serialization Examples

Domain X M



Actual Serialization Examples

Domain X M



Actual Serialization Examples

Domain X M



Additional Synthetic BBOB Data

Controlled experiments: 24 BBOB functions w/ multi-task augmentation

● Use random shifts f(x - shift)
● Metadata (M) shows (function name, dimension, shift)

○ Ex: “(Sphere, dimension=3, shift=[0.1,-0.3, -2.1])” 



Single-Task Baselines

● Gaussian Process (Vizier Default) 
● Random Forest + Trees (XGBoost) 
● MLP (2-Layer ReLU, MSE Loss) 

Caveat: Not trying to start a regression fight



Evaluation Protocol

Normalized Mean Average Error per Study

● Different y-scales (CIFAR10 is [0, 1], BBOB is [10^2, 10^9])
● LM pointwise prediction is median of 64 samples.



Experiments



Key Questions:

● Can LM simultaneously regress on multiple-tasks?
○ Over different spaces and numeric scales?

● How is multi-task training useful?
○ Why would we train on f’(x) if we’re eval-ing on f(x) only?

● Can fine-tuning deal with unseen tasks?
○ Does pretrained knowledge carry over?



Simultaneous Regression (BBOB)

Is LM capable of high-precision, simultaneous regression?



Uncertainty Estimation

Randomly flip y-sign. What 
happens?

Capture uncertainty + bimodality 

● No explicit ensemble count



Simultaneous Regression (Real World)

What about real-world objectives?



Multi-task Training (AutoML Data) 

If I only eval on f(x)...

Does training on f’(x) help? 

(↓ Lower is better)



Multi-task Training (BBOB)

BBOB seen as f(x,m). 

What if we vary m (the shift)?

(↓ Lower is better)



Evaluation Across Domains

Single-task not bad

● Beats MLP on conditionals!

Multi-task beats Single-task

● Beats baselines most times

(↓ Lower is better)



Does text help?

“Anonymize” prompts via study-dependent hashing:

● Parameter names “batch_size” -> “s710kdf9”
● Categorical values “adam” -> “129sd923”
● Metadata “shift: [-0.1, 0.2]” -> “dsnf9133”

De-correlates f(x) from f’(x).

Model still trains, but eval much worse.



Local Finetuning Experiments

Classic GPT-Trick: Pretrain then 
Finetune

Eval on unseen Vizier studies 

● Studies after March 31, 2023
● From distinct users

(↓ Lower is better)



Local Finetuning Experiments

Positive Transfer

● Pretrained knowledge carries over 
to new studies

Negative Transfer…?

● Sometimes pretrained knowledge 
is worse…?

(↓ Lower is better)



Positive or Negative Fine-tuning Transfer?

Suppose we always eval on AutoML data.

Possible pretrained checkpoints 

● None (Single-task)
● BBOB
● AutoML itself
● Entire Vizier



(Optional) Ablations



Best y-tokenization?



Importance of sampling aggregation?



When does Multi-task training help?

Intuitively when eval task has low training data.



Conclusions and Future Work



Gradients vs In-Context

ICL not only way to absorb (x,y).

Gradients:

● Unbounded limit for absorbing (x,y) pairs
● Easy JSON formatting, no (X) compression

Analogous to MLP vs GP

VS



Many improvements

● Weighted cross-entropy loss
○ Sign + exponent most important

● Better x-tokenizations
○ SentencePiece: ‘1234.5’ -> [‘12’, ‘3’, ‘4.5’]

● Better warm-start
○ English pretraining
○ Pretraining to decode X’s



New Applications

(X,M) can be anything:

● Configuration Files
● Graphs
● Combinatorics
● Language
● Code



New Benchmarks

Reward Models simulate human ratings

LM Surrogates simulate realistic objectives



More Links

● Paper 
● Code
● Poster

https://arxiv.org/abs/2402.14547
https://github.com/google-research/optformer/tree/main/optformer/omnipred
https://xingyousong.github.io/data/omnipred_poster.pdf


Thank you!


