OptFormer: Towards Learning Universal Hyperparameter Optimizers with Transformers

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya Kawakami, Greg Kochanski, Arnaud Doucet, Marc'aurelio Ranzato, Sagi Perel, Nando de Freitas

INTRODUCTION

Motivation

Data-driven hyperparameter optimization: Better priors + transfer learning

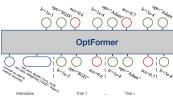
Problem: How to transfer-learn over different search spaces and tasks, containing unstructured text data?

Solution: Universal serialized data interface + Foundation Model for hyperparameter optimization

METHOD

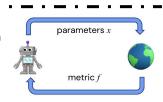
OptFormer: One model, Two output types

Policy: $P(\mathbf{x}_{t+1}|m, \mathbf{x}_1, y_1, \dots, \mathbf{x}_t, y_t)$ Function regression: $P(y_t|m, \mathbf{x}_1, y_1, \dots, \mathbf{x}_t)$



Data Serialization + Tokenization

- Normalized parameter + function values as integer token from [0, 1000)
- Metadata tokenized by standard English sentencepiece tokenizer



Google Vizier Database

- 16M+ HPO studies from 5 years
- Covers data from ML. Ads. Search across Google
- Varying search spaces, metrics, horizons, algorithms, metadata

Training

Standard supervised learning (behavioral cloning) w/ 250M param encoder-decoder Transformer

Inference as hyperparameter optimization

- Sample from prior
 - $\mathbf{x}_{t+1} \sim P(\cdot | m, \mathbf{x}_1, y_1, \dots)$
- Augmented with acquisition function

 $\mathbf{x}_{t+1} = \arg \max \quad u(P(\mathbf{y}_{t+1}|\ldots,\mathbf{x}^i))$ $\mathbf{x}^i \sim P(\mathbf{x}_{t+1}|\dots)$

______seture sestem on samtu (cmetrice:"acturacy",eguib>cMAXIMIZEs, edgorithm: "imatom, sarch" & cannes:"opt_kwlr";etype>cOUBLEs,cmin_talue>it=6,cmax_talue>it=2, csale,type>clock & cannes:"opt_type";etype>cCATEGORICALs_centegories=("SGD", "Adam" (Sil>cbb. edb);ed5<cbr/>cbb; cname>:"convnet on cifar10".<metric>:"accuracy".<eoal>:<MAXIMIZE After preprocessing name : " con v net on ci far 10 ", metric : " acc u racy ' goal : MAXIMIZE , algorithm : " random _ search " & name : " op t _ kw . Ir ", type : DOUBLE , min_value : 1 e -6 ,

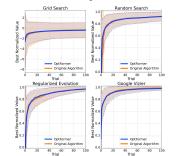
Subwords max_value : 1 e · 2, scale_type : LOG & name : " op t_type ", type : CATEGORICAL, categories : [" SG D ", " A dam "] after tokenization categories : [

Google AI Blog: ai.googleblog.com/2022/08/optformer-towards-universal.html Paper: arxiv.org/abs/2205.13320

Code: github.com/google-research/optformer

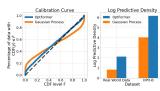
RESULTS

80 100



Simultaneous Algorithm Imitation

Better Function Predictions than Gaussian Processes

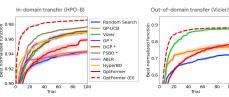


CONCLUSION

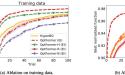
Summary and Future:

- Text-based universal representations for hyperparameter optimizer
- Learn from huge HPO datasets
- Transformers = blackbox policies + function regressors
- Future: various extensions in search spaces, training algorithms, planning, multi-objective, ...

Bayesian-Augmented Policy Outperforms SOTA Google Vizier



Ablation Studies



Prior policy

- OptFormer (FI)

60 ein

(c) Ablation on the prior policy.

HPO-B

- OptFormer (El

- Octformer-mi

--- OptFormer-min (I

(d) Ablation on the acquisition function.

