
The Vizier Gaussian
Process Bandit Algorithm
Xingyou (Richard) Song
xingyousong@google.com

On behalf of the Vizier Team

mailto:xingyousong@google.com

Vizier + Extended Team

Setareh Ariafar Lior Belenki Emily Fertig Daniel Golovin Tzu-Kuo Huang Greg Kochanski

Chansoo Lee Sagi Perel Adrian Reyes Xingyou Song Richard ZhangSrinivas
Vasudevan

● Tunes many of Google’s research + products

● O(1K) monthly users, O(70M+) objectives

● Invented before Tensorflow!

Google Vizier (2017)

Tuning Research Results:

● Hardware Design, Robotics

● Protein Design

Notable Users / Downstream Wins
Production

● Search, Ads, Youtube

Backend for Evolution:

● Neural Architecture Search

● Symbolic Algorithm Search

https://ai.googleblog.com/2021/02/machine-learning-for-computer.html
https://ai.googleblog.com/2022/08/towards-helpful-robots-grounding.html
https://ai.googleblog.com/2022/03/using-deep-learning-to-annotate-protein.html
https://www.google.com/search/about/
https://ads.google.com/
https://www.youtube.com/
https://ai.googleblog.com/2017/11/automl-for-large-scale-image.html
https://ai.googleblog.com/2021/04/evolving-reinforcement-learning.html

● Prod service for external users / businesses

● Shared client API: Easily switch b/w OSS or Cloud

Vertex/Cloud Vizier

Fundamentally Black-box Optimization
● Optimize unknown function f(x)

● Evaluating f(x) is expensive.

● Small evaluation budget

(~100-100K)

Parameter #1

Parameter #2
O

bj
ec

tiv
e

Want to find
this

Easy to
get stuck
here

1. Why a Service?

2. User/Client API: Distributed Tuning

3. Bayesian Optimization Intro

4. Gaussian Process, Acquisitions

5. Batched + Multi-Objective

6. Baselines + Benchmarks

7. End-to-End Results

8. Ablations

Table of Contents
Se

rv
ic

e
A

lg
or

ith
m

Ex
pe

rim
en

ts

Questions?

Why a Service?

● Tuning large ML model hyperparameters

● Chemical/Biological processes

● Optimizing cookie recipes

Very different workflows!

The Wide Variety of Scenarios

https://pubs.acs.org/doi/10.1021/ar960017f
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46507.pdf

● Eval Latency: Seconds to Weeks

● Eval Budget: 101 to 107 Trials

● Asynchronous or Synchronous (Batched)

● Failed evaluations: Retried or abandoned

● Early Stopping

Workflow Possibilities

● Users have freedom of when to:
○ Request trials

○ Evaluate Trials

○ Report results

● Service can preserve data on prior usage
○ Led to OptFormer, OmniPred, and more offline data research!

Benefits of a Service: No Evaluation Assumptions!

https://arxiv.org/abs/2205.13320
https://arxiv.org/abs/2402.14547

Setting up Client

Loop involves:
● Client obtains suggestions from server

● Evaluating suggestions

● Completing suggestions + updating server

Tuning Loop

Suggestion Animation (Full)

● Standalone + customizable Python codebase

● User can host service

OSS Vizier: 2022

Questions?

Algorithm

Animation from [Wang et al., 2023 “Pre-trained Gaussian processes”]

Bayesian Optimization Basics
Regressor / Model: Predict outcome y = f(x) from history

● Common Examples
○ Gaussian Process

○ Random Forest

● Guides search: Explore-Exploit
○ Acquisition Function

GP-UCB
Gaussian Process + Upper Confidence Bound (Srinivas, 2010)

● Provably convergent, sublinear regret

Key Components

Core:

● Double: Continuous range [a,b]

● Integer: Integer range [a,b]

● Discrete: Finite set of floats.

● Categorical: Finite set of strings.

Each ParameterSpec also contains:

● Scaling Type (uniform, log)

Search Space

X-Normalization
Enforce feature coordinates in [0,1]

● DOUBLE, INTEGER, DISCRETE by min/max

bounds

● CATEGORICAL with one-hot

Y-Warping
Raw Y-values can be huge range (e.g. 10-7 to 107), need normalization

● Half-Rank Warper: Fit poor y-values to normal curve

● Log-Warper: Stretch good-values, compress bad-values

● Infeasible Warper: Replace with unpromising values

Define kernel (distance metric between two points)

● Matern-5/2 is Euclidean-based

Gaussian Process Model

GP Hyperparameter Distribution

MAP Estimation
Fit GP hyperparameters to maximize likelihood:

● L-BFGS-B optimizer

UCB Acquisition
● Mean + standard deviation

● Explicit exploration-exploitation tradeoff

Acquisition: Trust Region
UCB Coefficient is high:

UCB(x) is highest around corners.

Use trust region around previous “trusted” points!
x2

x1

x3?

Acquisition Function Optimization
Before AutoGrad: Everything in C++.

● Multithreaded, not GPU-accelerated

Zeroth-Order Optimization (No gradients!)

● “Hopping up a hill”

AF Optimization: Zeroth-Order Benefits
“Is a(x) > a(x’)?”

● Invariant to function scale.

AF Optimization: Firefly Algorithm
Pick two random “fireflies” and move “dimmer” towards “brighter” based

on distance

AF Optimization: Vectorized Firefly
Write Algorithm in JAX for crucial speedups!

● Vectorization (simultaneous forces from other fireflies)

● Support CATEGORICALs

● Repel from dimmer fireflies

Questions?

Batched Optimization: Motivation
Users request:

● Batch of X’s

● More X’s w/o evaluating previous

Naively sample from sequential algorithm:

● Argmax(UCB(history)) leads to duplicate trials!

Batched Optimization: Pure Exploration
1. Give dummy values (0) to unevaluated objectives.

 2. Maximize standard deviation over real + “dummy” history:

 3. Make sure UCB is still better than historical maximum

Multi-Objective Optimization
M metrics, find points which maximize hypervolume

● volume of Pareto frontier

● w.r.t. reference point

Exact computation given points is #P-Hard!

Scalarization: Intuition
Suppose we want to maximize:

Try weighted sum, ex:

Hypervolume Integral
Hypervolume is integral over polar coordinates!

Hypervolume Integral
Hypervolume is integral over polar coordinates!

Hypervolume Integral
Hypervolume is integral over polar coordinates!

Hypervolume Integral

Hypervolume Improvement:

Scalarize Acquisition:

UCB + Hypervolume
Compute UCB’s over all metrics:

Questions?

Experiments

● HEBO
● HyperOpt

● Optuna

● Scikit-Optimize

● BayesianOptimization
● Ax / BoTorch (Meta)

Algorithmic Baselines

~50-90% of all use-cases!

Method Similarities
TPE-based: HyperOpt, Optuna

GP-based: Ax, BayesianOptimization, HEBO, SkOpt

● Matern-5/2 Kernel (Continuous)

● L-BFGS-B MAP Estimation

GP Method Differences

Algorithm Acquisition Function Acquisition Optimizer

Ax Expected Improvement (EI) L-BFGS-B (Continuous)
Hill-Climb (Mixed/Categorical)

Bayesian-
Optimization

UCB (Coeff = 2.5) L-BFGS-B

HEBO Max(EI, PI, UCB) NSGA2

SkOpt Random(EI, LCB, PI) L-BFGS-B (Continuous + Mixed)
Random Search (Categorical)

Vizier (ours) UCB (Coeff = 1.8) Firefly

Benchmark Functions
Emphasis on different shapes

● Blackbox Optimization Benchmark (BBOB)

● COMBO

● Multi-Objective (DTLZ, WFG, ZDT)

Most Common: Full Continuous (20D)

Full Continuous (20D) Individual Plots

Continuous (Varied Dimension)
Giant “kitchen-sink” spaces

Continuous (Varied Dimension)
Giant “kitchen-sink” spaces

High-Dim Degradation

Pure Categorical
Vizier > Everyone Else significantly.

Pure Categorical
Vizier > Everyone Else significantly.

HEBO crashes on non-boolean spaces.

Hybrid (Continuous + Categorical)

Hybrid (Continuous + Categorical)
Massive drop in baselines!

Batched Case

Batched Case
High batch settings still robust e.g. against HEBO

Multi-Objective (Individual Plots)

Multi-Objective (Individual Plots)
Instability with e.g. HEBO

Multi-Objective (Aggregate)

Questions?

Ablation: Acquisition Optimization
Firefly > L-BFGS-B

Ablation: AF-Optimization vs E2E
● Firefly > L-BFGS-B

● Trust Region (TR) > Without Trust Region

Ablation: What if Ax used UCB = 1.8?
Equalize acquisition functions.

Ax’s median still the same

Suggests AF optimizer is very

important!

Ablation: Noisy Objectives
Ranking same as before.

Ablation: Latency + GPU Acceleration
All components in JAX:

● Gaussian Process

● Zero-Order Acq. Optimizer
○ Others don’t GPU-accelerate

Code: https://github.com/google/vizier

Documentation: https://oss-vizier.readthedocs.io/en/latest/index.html

AI Blog:

https://ai.googleblog.com/2023/02/open-source-vizier-towards-reliable-and.html

Algorithm Paper: https://arxiv.org/abs/2408.11527

Systems Paper: https://arxiv.org/abs/2207.13676

Links

https://github.com/google/vizier
https://oss-vizier.readthedocs.io/en/latest/index.html
https://ai.googleblog.com/2023/02/open-source-vizier-towards-reliable-and.html
https://arxiv.org/abs/2408.11527
https://arxiv.org/abs/2207.13676

Thanks!

